
Th e self assembly of cells into tissues and organs is an 

elegant and intricate process that is vital for development 

and homeostasis. During organogenesis, the assembly of 

cells is controlled genetically as well as through cues from 

cell-cell and cell-matrix interactions [1,2]. Cells assemble 

into higher-order patterns that are either stereotyped 

such that there is little variation in the timing and fi nal 

architecture between individuals, or non-stereotyped, 

which leads to diff erences in the details [3]. Th e 

branching of the ducts of the pubertal mammary gland is 

a non-stereotyped process in which the interactions 

between the ducts and their surrounding micro environ-

ment produce unique tree-like architectures. In contrast, 

branching of the trachea in Drosophila melanogaster is a 

stereotyped process that is under strict genetic control. 

Th ese two systems serve as excellent models with which 

to investigate the dynamic interplay between cells during 

tissue formation, under two diff erent modes of control.

Formation of the trachea in D. melanogaster

Th e trachea of the fruit fl y is a ductal structure respon-

sible for the delivery of oxygen to tissues. Th is organ 

forms during embryonic development and involves 

invagination, division, extension and fusion of select cells 

of placodes along the lateral ectoderm (Figure  1). Th e 

determination and positioning of the placodes as well as 

the choreographed steps that lead to the formation of the 

trachea is predominantly under the control of the gene 

trachealess (Trh) [4,5]. At embryonic stage 11, through 

the activation of the gene rhomboid (Rho) by Trh, the 20 

placodes containing approximately 40 cells each invagi-

nate through apical constriction and undergo mitotic 

division to form 80-cell tracheal sacs [6-8]. Th e internal-

ized cells then extend from the sites of invagination to 

form six distinct branches: the dorsal branch (DB), dorsal 

trunk (DT), visceral branch (VB), lateral trunk (LT), 

ganglionic branch (GB), and transverse connective (TC). 

Th e TC forms from the mid-region of each sac, and DTs 

extend along the anterior-posterior axis and fuse with 

DTs of the neighboring sacs to form the main throughway 

of the trachea. Th e cells of the DB migrate dorsally and 

select fusion cells that bind with their counterpart cells of 

DBs at the opposite side of the embryo [9], while the cells 

of the LT migrate ventrally and bind with their counter-

part LT cells of neighboring metameres to the anterior 

and posterior, thus fusing the branches and forming addi-

tional contiguous pathways for circulation. Th e cells of 

the VB and GB do not fuse with those of the neighboring 

sacs but still branch and extend into the surroundings to 

complete the tracheal structure [7]. Th e extensions of the 

branches are guided by various signaling pathways, 

including Breathless (Btl) [10], Decapentaplegic (Dpp) 

[11] and Slit [12]. Even in a strictly stereotyped branching 

system such as this, however, the role of cellular dynamics 

is vital and can be seen in the extension and fusion of the 

DB.

Th e DB consists of approximately six cells and these 

cells migrate dorsally away from the sac toward the 

morphogen Branchless (Bnl), which acts as a chemo-

attrac tant secreted by the surrounding cells [13]. How-

ever, the branch is able to extend normally even when all 
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but one of the cells is devoid of Btl, the receptor for Bnl 

[14]. Th e cell with functional Btl receptors acts as a leader 

and is able to guide the rest of the cells. In wild-type 

embryos, a leader cell emerges even when every cell 

expresses Btl. At this stage of development, the cells of 

the DB are nearly identical and there is no predetermined 

leader; however, there are small diff erences in the 

expression level of Btl. By exploiting these small 

diff erences, the cells with the highest expression levels of 

Btl jockey for the lead position in the newly forming 

branch, while simultaneously amplifying the diff erence in 

the activation of Btl among the population through 

Notch-mediated lateral inhibition [14-17]. Th e activation 

of Btl by Bnl induces the production of Delta, a ligand 

that binds to and activates Notch in the neighboring cells. 

Activated Notch inhibits signaling downstream of the Btl 

receptor and production of Delta within that cell. Over 

time, this results in one cell with substantially higher Btl 

activity than its neighbors [16,17]. Th e successful cell 

assumes the role of the leader at the tip of the branch 

while the other cells form the stalk. Th is establishes a 

hierarchy and the leader cell is able to effi  ciently move 

the branch up the Bnl gradient. As the dorsal branch 

extends, one of the cells of the branch comes in contact 

with a cell from the neighboring branch and binds to it, 

thus fusing the branches to form a contiguous airway [9]. 

Notch signaling again plays a similar role by aiding Bnl 

and Dpp and ordaining the fusion cell fate [16,18,19].

During metamorphosis, the trachea once again 

undergoes signifi cant remodeling. Posterior tracheal 

branches are lost while anterior branches expand to cover 

that space and new cells replace most of the cells in the 

existing branches. Progenitor cells called tracheoblasts 

that have remained quiescent during embryonic and 

larval development begin to proliferate and travel along 

the TC and VB under the guidance of Btl and replace the 

old cells [20,21]. However, the DBs are replaced not by 

progenitor cells but by diff erentiated DB cells that reenter 

the cell cycle and proliferate to replace the existing 

branch [21].

Formation of the mammary ducts

Th e mammary gland is a ductal structure responsible for 

production and secretion of milk in mammals. Th e ducts 

of the mammary gland are composed of a hollow lumen 

surrounded by a layer of luminal epithelial cells, which 

are themselves surrounded by a layer of myoepithelial 

cells that create the basement membrane that separates 

the epithelium from the stroma. During puberty in 

rodents, hormones from the ovary and the pituitary 

gland induce the formation of bulbous terminal end buds 

(TEBs) at the tips of the rudimentary epithelial ducts 

[22]. Extension and branching of the TEBs into the 

surrounding mesenchyme sculpt the highly branched 

Figure 1. Schematic of tracheal development. (a) At embryonic 

stage 11, the placodes have invaginated and are ready to extend 

stereotypically. (b) At stage 12, the branches begin extension. (c) 

At stage 13, the branches have fully extended and begin to fuse. 

(d) By stage 16, the tracheal fusion is complete. Progenitor cells 

called tracheoblasts that become activated during metamorphosis 

remodeling are located in the spiracular branch (SB). (e) Schematic 

of typical tracheal branch development from embryonic stage 12 to 

stage 13 to stage 16, after the completion of tracheal branching and 

fusion and to the completion of metamorphosis remodeling. DB, 

dorsal branch; DT, dorsal trunk; GB, ganglionic branch; LT, lateral trunk; 

TC, transverse connective; VB, visceral branch.
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mature mammary epithelial tree. Th e TEB is composed 

of multiple layers of preluminal epithelial cells encased in 

an outer layer of pluripotent stem cells called cap cells 

(Figure 2) [23]. Th e cap cells and the preluminal epithelial 

cells are highly proliferative. Th e force generated from 

the rapid proliferation, along with the construction of 

basement membrane laterally and destruction of extra-

cellular matrix at the front, is thought to propel the ducts 

forward at an average rate of 500 μm per day [24,25]. As 

the TEBs extend, the cap cells move laterally along the 

duct and diff erentiate into myoepithelial cells, while the 

preluminal epithelial cells give rise to luminal epithelial 

cells [26]. Th e structure of the TEB is maintained through 

E-cadherin- and P-cadherin-containing adherens junc-

tions and netrin-1/neogenin interactions. Preluminal 

cells interact through E-cadherin, while the cap cells are 

connected by P-cadherin [27]. Local interactions between 

netrin-1, a neural guidance cue present on preluminal 

cells, and neogenin, a netrin receptor present on the cap 

cells, help maintain the proximity of the preluminal cells 

to the cap cells [25]. Loss of either netrin or neogenin 

results in the separation of the cap cell layer from the 

preluminal layer and destabilization of the TEB [25].

Estrogen and growth hormone initiate ductal elonga-

tion by activating the estrogen receptor (ERα) and the 

growth hormone receptor, respectively, in the stromal 

cells surrounding the epithelium [27-29]. Th e activation 

of growth hormone receptor enables TEB formation 

through the insulin-like growth factor pathway [30]. 

Estrogen signaling leads to the activation of progesterone 

receptors in the epithelium, which induces epithelial 

proliferation and ductal movement. Estrogen signaling 

also stimulates the stromal cells to activate matrix 

metallo proteinases (MMPs) through amphiregulin and 

epidermal growth factor receptor [22]. Stromal cells 

activate several MMPs, including MMP3 and MMP14. 

MMP14 activates MMP2, which aids in ductal elongation 

by preventing apoptosis of the cells within the TEB. 

MMP2 and MMP3 also play a role in determining sites of 

lateral branching along the duct. High MMP2 prevents 

the initiation of lateral branches by stimulating the 

production of transforming growth factor (TGF)β, 

whereas MMP3 enables lateral branching by degrading 

the basement membrane and allowing the cells to extend 

through the fat pad [31].

Unlike tracheal branching, there is no evidence for a 

global chemoattractant that guides the TEBs through the 

fatpad [32]. Th e TEBs weave through the fatpad, extend-

ing lateral branches and bifurcating along the way, by 

integrating the global stimulatory cues with more local 

cues from neighboring cells, their environment and their 

own geometry [32]. Patterns of endogenous mechanical 

stresses arise along the ducts due to asymmetries in their 

geometry coupled with isometric contraction of the cells 

and their ability to transmit these forces to their 

neighbors through adherens junctions [33]. Th ese mech-

anical stress patterns appear to regulate the sites at which 

branches initiate. Indeed, three-dimensional organo typic 

culture models revealed that branches initiate from sites 

of highest mechanical stress [32], and that cells in these 

regions of high mechanical stress adopt a more motile 

mesenchymal phenotype [34,35], increase signaling 

through focal adhesion kinase (FAK) [32], and increase 

production of MMPs to aid in degradation of surrounding 

matrix, all of which enable branch extension [36]. 

However, while high mechanical stress is necessary for 

branch initiation, it is not suffi  cient [32]. Branch initiation 

and extension are also controlled by the local 

Figure 2. Structure of a terminal end bud. The terminal end bud is composed of multiple layers of preluminal epithelial cells encased in an 

outer layer of pluripotent stem cells called cap cells. The cap cells are connected through P-cadherin (P-Cad) junction, while the preluminal cells 

are connected through E-cadherin (E-Cad) junctions. Local interactions between netrin-1, a neural guidance cue, present on preluminal cells and 

neogenin, a netrin receptor, present on the cap cells help maintain the proximity of these two layers.
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concen tration of morphogens such as TGFβ [37]. High 

con centrations of TGFβ prevent branching of the ducts, 

and autocrine secretion of this inhibitory morphogen by 

the epithelial cells is thought to prevent aberrant 

branching and maintain proper spacing between ducts 

[37,38]. By responding to these various stimulatory and 

inhibitory cues, the TEBs navigate through the stroma 

until they reach the limits of the fat pad, where they 

regress and form terminal ducts. However, the ducts still 

maintain a certain population of undiff erentiated stem 

cells that are capable of self-renewal and repopulation of 

the entire mammary gland [39,40]. Th ese undiff erentiated 

cells are thought to aid in the remodeling of the 

mammary gland during and after pregnancy, where 

further ductal expansion and regression occur, 

respectively [40].

Conclusion

Branching of the trachea and the mammary gland high-

light the dynamic process of tissue formation. Th ese two 

systems show how stem cells, progenitor cells and diff er-

entiated cells come together, and through a combination 

of global and local guidance cues specify the fi nal archi-

tecture of the tissue. During puberty in mammals, the 

pluripotent cap cells combined with other cell types of 

the TEB and through the regulation of the micro-

environment produce the unique pattern of the ductal 

tree. In the formation of D.  melanogaster trachea, even 

though the fi nal architecture is fi xed, the cells of the 

invaginated tracheal placodes have a high degree of 

freedom to determine the leaders, the fusion cells and 

those that will remain quiescent during the various 

branch formations. In addition to normal development, 

the dynamics of stem cells also come into play during 

tumor formation. Cancer stem cells (CSCs) are 

specialized cells within tumors that are capable of self-

renewal and initiation of tumors [41]. CSCs have all the 

characteristics of normal stem cells and are even capable 

of generating non-malignant structures [42,43]. Th e 

origin of CSCs is still hotly debated. While the similarities 

between CSCs and normal stem cells might strongly 

suggest that CSCs arise through aberrant diff erentiation 

of normal stem cells, there is also evidence to suggest that 

CSCs might arise from progenitors or even through 

dediff erentiation of fully diff erentiated cells. Under stand-

ing the dynamics of cells during normal development will 

help in understanding CSCs and malignant development 

in general, as many of the processes involved in normal 

development are conserved in malignant development.

Th anks in large part to advances in technology, we are 

fi nally able to glimpse at the complexities of develop-

mental processes. However, better in vivo imaging 

approaches are needed to fully answer most of the open 

questions, as it is near impossible to investigate dynamic 

processes using still images. Advances in live imaging 

could help, for example, to study the formation and 

movement of the TEBs. Studies in culture have suggested 

that organization of the TEBs might involve cellular 

sorting to optimize the structure for invasion through the 

fatpad [44]; however, this has yet to be shown in vivo. 

Furthermore, the mechanism by which the TEB moves 

through the fatpad is still unclear [45]. In addition to 

imaging, advances in techniques to manipulate in vivo 

microenvironments might prove to be the most fruitful 

venture. Th e mechanics of the microenvironment 

integrate with molecular cues in the regulation of cell 

division, motility, branching, and stem cell diff erentiation 

[46]. Laser ablation studies in D. melagonaster have been 

used to show the involvement of tensile forces in tracheal 

branching [47-49]. At present, however, culture models 

still provide one of the best means of studying the eff ects 

of the mechanics of the microenvironment on these pro-

cesses in a controlled and quantifi able manner. While 

they do suff er from drawbacks of artifi ciality, sophis ti-

cated three-dimensional culture models can aid to bridge 

the gap between the plastic world and the in vivo world, 

and could play an important role in studying the interplay 

between multiple cell types during development [50,51]. 

A better appreciation of the dynamic nature of tissue 

assembly will have a great impact on the study of normal 

and malignant development and may also will help 

advance the fi eld of tissue engineering.
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