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Standardization of human stem cell pluripotency
using bioinformatics
Michael W Nestor and Scott A Noggle*
Abstract

The study of cell differentiation, embryonic development, and personalized regenerative medicine are all possible
through the use of human stem cells. The propensity for these cells to differentiate into all three germ layers of the
body with the potential to generate any cell type opens a number of promising avenues for studying human
development and disease. One major hurdle to the development of high-throughput production of human stem
cells for use in regenerative medicine has been standardization of pluripotency assays. In this review we discuss
technologies currently being deployed to produce standardized, high-quality stem cells that can be scaled for high-
throughput derivation and screening in regenerative medicine applications. We focus on assays for pluripotency
using bioinformatics and gene expression profiling. We review a number of approaches that promise to improve
unbiased prediction of utility of both human induced pluripotent stem cells and embryonic stem cells.
Introduction
Human pluripotent stem cells are promising tools to
advance the study of cell differentiation and embryonic
development. These cells hold promise for the develop-
ment of personalized regenerative therapies. Key to these
endeavors is the fundamental attributes of self-renewal
and the potential to generate any human cell type, char-
acteristics that constitute pluripotency when combined.
The gold standard for human pluripotent stem cells is
embryonic stem cells (ESCs), derived from preimplanta-
tion embryos in excess of clinical need. While therapies
using human embryonic stem cell (hESC)-derived cells
are currently in development, the ability of human adult
cells to return to a pluripotent state offers the potential
to personalize regenerative medicine. The landmark
study by Takahashi and Yamanaka demonstrated that
four transcription factors (Oct4, KLf4, Sox2, and c-Myc)
were sufficient to convert adult cells to pluripotent cells:
human induced pluripotent stem cells (iPSCs) [1,2].
Since the advent of this technology, a large number of
studies have emerged demonstrating the immense power
of these cells – with iPSCs having been differentiated
into hematopoietic progenitors, endothelial cells, retina,
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osteoclasts, islet-like cells, hepatocyte-like cells, and neu-
rons [3].
Compared with methods for deriving ESCs, the gener-

ation of iPSCs involves management of confounds gen-
erated from resetting the adult transcriptional program.
During reprogramming, the activation of multiple signal-
ing pathways through exogenous transcription factor ex-
pression induces epigenetic changes and changes in gene
expression. Prolonged expression of these factors can in-
duce a highly variable population of reprogramming
states [4]. This variability of genetic expression may
combine with stochastic events involved in reprogram-
ming to generate the inefficient and highly variable yield
often observed during iPSC generation [5]. For example,
while iPSC reprogramming typically results in a large
number of highly proliferative cells, very few cells exhibit
pluripotency [6]. Despite these inefficiencies, once de-
rived and subjected to even minimal quality control, it is
remarkable how similar these two types of pluripotent
cells behave in functional assays.
How is the quality and uniformity of iPSCs and ESCs

most efficiently tested? Early work established a number
of empirically determined criteria, including a distinct
morphology, proliferation rate, activation of pluripotent
genes, expression of surface markers, silencing of repro-
gramming transgenes, embryoid body, and teratoma for-
mation [7,8]. In the mouse, iPSCs and ESCs ideally
form germline and tissue chimerism when injected into
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blastocysts. The most stringent assay for developmental
potential is the tetraploid complementation assay, in
which cells are placed in an environment where they can
exclusively contribute to the entire mouse [9,10].
Because this complementation assay is not available

for human cells in the context of human embryogenesis,
assays for developmental potential attempt to answer
the question of functionality by differentiation into ma-
ture cell types using teratoma assays. Most hESCs that
have been derived and are karyotypically normal can dif-
ferentiate into most cell types in these tests. Decrements
in the quality of hESC lines may primarily come from
problems with genome integrity. Lines with karyotypic
abnormalities that confer growth advantages tend to dif-
ferentiate less well in teratoma assays (reviewed in [11]).
The primary measure of quality of hESCs may therefore
be genomic integrity rather than stringent measures of
differentiation potential.
While several groups have demonstrated fundamental

similarities in biomarkers among stem cell lines (see for
example [12,13]), these tests are time consuming, are
difficult to perform for large numbers of cell lines, and
test performance can vary from laboratory to laboratory.
Concomitant with the effort to determine whether there
are molecular and functional differences of consequence
between iPSCs and hESCs, many sensitive bioinformatic
assays have been developed that are starting to replace
the embryological and teratoma assays used to char-
acterize pluripotency. Recent work has focused on
establishing better pluripotency standards for the a
priori selection of cell lines. In this review, we consider
several major bioinformatic approaches that have been
used to assess the quality of pluripotent stem cells and
we provide a nonexhaustive overview of the results
obtained using several approaches.

Bioinformatic assays for pluripotency
In the absence of stringent embryological assays for
pluripotency in human pluripotent stem cells, there has
been much progress over the last few years in develop-
ing genome-wide assays and associated bioinformatic
methods for their analysis. These methods originally fo-
cused on identifying global transcriptional profiles that
characterize the pluripotent state relative to differenti-
ated cells and tissues. With advancement in sequencing
technologies has also come the global analysis of the
epigenome. Together with analysis of various noncoding
RNAs, all of these assays have been used to address the
question of pluripotency identity at the molecular level.
With the development of iPSC technology, the focus

has turned to characterizing differences among pluripo-
tent stem cells. The current view is that, whether due to
different derivation strategies or genetic differences,
pluripotent stem cell lines can vary. For example, while
most studies find iPSCs to be quite similar to hESCs at
the molecular level, the challenge has been to identify
subtle differences that might have functional consequences.
Efforts to characterize this variation have resulted in a
number of algorithms used to assess line-to-line differences
in pluripotent stem cells.

Gene expression profiling
Gene expression profiling using DNA microarrays was
the first method of global molecular analysis applied to
map the transcriptome of pluripotent stem cells [14-17]
and has become a standard assay of pluripotency in many
studies. Various classification algorithms have been used
to group lines into similar transcriptional states. For
example, samples of cultured pluripotent stem cells can
be distinguished from multipotent stem cell populations
and differentiated cell types [18].
Significant progress has been made in applying these

analysis methods to discriminate more subtle differences
in pluripotent stem cells. For example, initial studies
comparing iPSCs and hESCs suggested that the two
populations of cells are statistically different [19-21], and
this difference, although significantly decreased, persists
into later passages. However, more recent studies have
found global similarities with small differences between
iPSCs and hESCs [2,22-24]. Changes in gene expression
signatures are not limited to mRNA; they have also been
observed in both miRNA and long intergenic noncoding
RNA [25-27]. However, it is still not clear whether
this variation is due to different growth conditions,
laboratory-to-laboratory variation [28], heterogeneity in
iPSC quality [20], or small sample sizes [19].
Can these methods be used on their own to identify a

normal pluripotent cell? Finding a unique gene expres-
sion profile that consistently varies in pluripotent cells
has been difficult [22]. However, as the sample sizes of
these studies are relatively small compared with, for ex-
ample, gene expression in cancer studies, where sample
sizes can be in the hundreds to thousands [29], the ap-
proaches used in the above studies may not be suffi-
ciently powered to find consistent but small differences.
As the availability of well-curated samples increases, it

should become possible to make more reliable biological
distinctions. For example, the availability of larger
datasets makes more advanced methods based on ma-
chine learning possible for classifying pluripotent stem
cell lines. This approach is taken for PluriTest, an algo-
rithm that makes use of training sets containing large
numbers of undifferentiated, differentiated, normal and
abnormal human stem cell lines and tissues. The large
sample size allows the algorithm to construct bioinfor-
matic models for assessing the quality of novel pluripo-
tent stem cells based only on DNA microarray gene
expression measurements [30]. To generate the model,
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two principal component vectors were calculated that
first separate pluripotent from differentiated states and,
second, distinguish abnormal from normal expression
signatures from a large training set of almost 500 sam-
ples. The samples used for training were curated for
microarray data quality and contained hESCs, germ cell
tumor samples, primary cell lines, and somatic tissues.
As reported, the resulting PluriTest algorithm could

successfully distinguish independent samples of germ
cell tumors from hESCs as well as distinguish repro-
grammed from partial reprogrammed iPSCs. The algo-
rithm was also able to distinguish parthenogenetic stem
cell lines from hESCs, presumably because of differences
at imprinted loci. This suggests it should be possible to
distinguish abnormal samples from normal samples and
to classify them as undifferentiated or differentiated.
Others have reported using PluriTest to characterize
iPSCs [31-33]. Additionally, the algorithm has been rep-
licated with mouse ESCs and can predict the response to
nanog overexpression, which results in shifts in the
pluripotent state consistent with differentiation of the
inner cell mass of the blastocyst to an epiblast-like state
characteristic of the implanting embryo [31].
While the algorithm can distinguish pluripotent states,

samples identified as abnormal currently need further
analysis to identify the particular cause. However, Wil-
liams and colleagues note that this strategy could also be
applied to other types of data describing stem cell lines,
such as epigenetic status [34]. How sensitive the algo-
rithm is for abnormalities such as copy number variations
or translocations is also not clear. Because machine learn-
ing techniques are dependent on the quality and breadth
of variability of the training dataset used to construct the
model, including tests of genetic integrity, for example,
could improve predictions of functional quality of the
lines.

Epigenetic profiles
A promising route to providing standardized assays for
iPSC and ESC pluripotency and differentiation is to
understand the epigenetic landscape that is common to
both systems and connect it to gene regulation. Epigenetic
comparisons via technology such as chromatin immuno-
precipitation have thus been used to develop the tran-
scription factor binding, histone modification and DNA
methylation profiles of human iPSCs and ESCs (recently
reviewed in [35,36]).
Again it has been informative to look at progress in

the ability to distinguish epigenetic differences between
iPSCs. Initial attempts using this approach yielded in-
consistent results when comparing ESCs and iPSCs.
Screening for transcriptional differences in early (passage
5) and late (passage 28) iPSCs as compared with ESCs,
chromatin immunoprecipitation analysis showed similar
bivalent H3K chromatin domain marks that are enriched
in pluripotent cells [19]. However, in a subsequent study
using six independent ESC lines and six independent
iPSC lines and measuring histone H3K4me3 and
H3K27me3 modifications via chromatin immunoprecipi-
tation as a readout for transcriptionally active or repressed
domains of the genome, respectively, no significant
phenotypic differences in the chromatin marks were
reported [37]. In contrast, another report showed that
while H3K27 repressive marks were similar, a small frac-
tion of repressive H3K9me3 marks were unique to iPSCs
[38]. However, the functional consequences of these differ-
ences are still not clear.
While assaying histone modifications can identify

poised transcriptional states characteristic of pluripo-
tency, studies of genome-wide methylation can provide a
complementary view of the epigenetic state as they usu-
ally anti-correlate. DNA methylation to generate single
nucleotide genome-wide maps has been generated for
the pluripotent state of hESCs and iPSCs [22,33,39].
Although a robust general test for pluripotency when
assaying core pluripotency associated genes, global DNA
methylation comparison studies have also given mixed
empirical results. Using patterns of DNA methylation
across ~66,000 CpG sites from iPSCs, while globally
similar, differences between iPSCs and ESCs at methyla-
tion of CpG sites were observed when a hierarchical
clustering analysis was performed [40]. Genes analyzed
from iPSCs were less methylated than fibroblasts and
ESCs, which was attributed in part to epigenetic spill-
over from the overexpression of transcription factors
that were introduced to the iPSCs via integrated viral
transgenes. Additionally, measurement of differentially
methylated regions from late-passage iPSCs shows
that, when compared with ESCs, iPSCs have 92%
hypomethylated CpGs [23] – although this value may be
skewed due to the small number of ESC samples ana-
lyzed. Additionally, differential methylation between
pluripotent and somatic tissue samples has been found,
mainly at imprinted loci, some of which could be
explained by differences in culture conditions among
lines tested [33]. Reprogramming iPSCs may also intro-
duce aberrant and inefficient methylation [41], which
may have potential functional influences during and
after differentiation [33].
Inefficient DNA methylation in iPSCs combined with

the stochastic nature of novel epigenetic aberrations in
these cells may not show a phenotype until after differ-
entiation when altered gene expression leads to dysfunc-
tional cell states [33,42]. This in part may be the
explanation for iPSC bias toward donor-cell-related line-
ages [41]. In mouse iPSCs, however, the promoter
methylation pattern was correlated with donor cell ori-
gin at early passage numbers but not after subsequent
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passaging [43], suggesting further completion of repro-
gramming over time or selection for pre-existing fully
reprogrammed cells within cultures over time. This may
not be the case in human pluripotent stem cell cultures
because recent reports found that aberrant methylation
can sometimes be gained at imprinted loci during cul-
ture [33]. Importantly, after directed differentiation into
multiple tissues, such aberrant methylation patterns per-
sist in the differentiated cells [33]. Again, it seems the
functional consequences of epigenetic alterations must
be further explored.
Despite these inconsistencies, current technology for

monitoring epigenetics is clearly quite sensitive to small
changes that might have functional consequences. Com-
bining methylation mapping and gene expression signa-
tures by algorithm may therefore be possible to more
robustly infer the cell state. Bock and colleagues
performed a number of statistical tests against previously
published datasets [19,22,26,42] to show that there are
small but significantly detectible differences in gene ex-
pression and DNA methylation in some but not all iPSC
cell lines compared with hESC lines [22]. Their best
performing classifier used a support vector machine
learning algorithm trained on a combination of DNA
methylation and gene expression data from ESC lines
versus iPSC lines. Using 20 hESC lines and 12 iPSC
lines, this method was able to correctly classify hESC lines,
but was only moderately successful at classifying iPSC
lines. On average, the method could predict iPSC gene sig-
natures with 81% accuracy and 91% specificity but only
moderate sensitivity (61%). While combining gene expres-
sion and methylation, this study used far fewer training
samples for modeling compared with PluriTest. Whether
the use of a bigger dataset for training the classifiers
will improve these predictions is therefore important to
determine. Additionally, like earlier studies, it is not clear
whether these differences will have substantial functional
consequences during or after differentiation.
This combinatorial approach has recently been shown

to predict the cell state during hematopoietic stem cell
differentiation [44]. Bock and colleagues intersected gene
expression and DNA methylation to find a small number
of loci that showed consistent negative correlations. Par-
ticular loci were indicative of known differentiation
stages. Using this approach combined with a gene signa-
ture indicative of the proliferation state, they could pre-
dictively identify differentiation stages in the well-
defined system of hematopoiesis in the adult mouse.
This integrative approach highlights the value in com-
bining datasets from different assays that produce
complex data to gain predictive power. Whether this ap-
proach has utility in determining plutipotency status and
differentiation potential in human pluripotent stem cells
will be important to determine.
The scorecard approach
The selection of application-suitable cell lines that ac-
curately differentiate into intended cell types, as cur-
rently practiced, is a labor-intensive process that requires
the teratoma assay as well as low-resolution tests for
pluripotency [7]. The bioinformatic approaches discussed
above mainly interrogate the undifferentiated state of
pluripotent stem cells. But what about the cells’ ability to
differentiate? Recently, an additional approach that com-
bines gene expression and epigenetic measures with an
in vitro differentiation assay has been proposed by Bock
and colleagues [22].
This group first generated a deviation scorecard that

assesses DNA methylation and gene expression profiles
relative to a set of reference standard hESC lines to
identify lines that deviate by outlier detection methods.
The result is a list of outlier genes for each line. Genes
are then highlighted that could be screened for their
probable effect on performance in functional assays. To
test this scorecard, genes were screened that would lead
to aberrant function for motor neurons if the iPSC line
was differentiated toward that fate. The hypermethylation
of one such gene, GRM, a glutamate receptor expressed in
motor neurons, was discovered. This quick test allowed
Bock and colleagues to rule out the use of one cell line
that might have been used to differentiate motor neurons.
To obtain an overall score for differentiation potential,

a quantitative embryoid body differentiation assay that
uses high-throughput transcript counting was used to
gain a predictive measure of differentiation potential of
pluripotent stem cell lines. Bock and colleagues used a
nondirected embryoid body differentiation assay in
which the embryoid bodies were grown for the 20 ESC
lines and 12 iPSC lines and the RNA was collected and
probed for expression levels of 500 marker genes. From
this assay, a quantitative gene expression profile of em-
bryoid bodies from the hESC reference lines was deter-
mined. Finally, the cell line-specific differentiation
propensity was calculated for each of the germ layers
using a bioinformatic algorithm that calculates differen-
tiation propensity for multiple lineages relative to the
performance of reference lines. In functional verification
tests, the lineage scorecard was able to correctly classify
iPSC lines based on their ability to differentiate into
ISL1-positive motor neurons in directed differentiation
assays.
Importantly, in a parallel but independent study by

Boulting and colleagues, the differentiation propensity of
these lines was compared with functional motor neuron
differentiation efficiency and the cells were subjected to a
number of relevant functional tests [45]. There was a sta-
tistically significant correlation of the lineage scorecard-
based predictions with functional assays [45]. Important
to note, however, is that Boulting and colleagues also
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found that lines which performed poorly in the embryoid
body assay in a forced directed differentiation protocol
achieved similar functional results, suggesting that even
lines which perform poorly relative to reference lines
could be useful under the right conditions.
Taken together, these results suggest that integrating

multiple high-content assays can predict functional
outcomes in differentiating iPSCs. Additionally, the
lineage scorecard approach should also be amenable to
screening for a cell line’s ability to differentiate into spe-
cific lineages by selecting more specific gene sets and
recalibration to reference standards. As the number of
lines screened increases, it should be possible to identify
the most frequent gene expression and epigenetic aber-
rations, which should further lower the cost of these
assays.

Conclusion
Observed variation in both hESCs and iPSCs may have a
number of causes, including differences in in vitro cul-
ture as well as inherent genetic or epigenetic differences.
In the process of pursuing a consistent profile of
pluripotency, multiple methods have emerged that
promise to correctly classify stem cell lines. In most of
the current studies, only a relatively small number of
hESC lines have been used as references and the genetic
diversity of available hESC lines is probably much more
limited than the available iPSC lines [46]. Further, sev-
eral recent reports suggest that some of the differences
between iPSCs and hESCs can be erased by altering cul-
ture conditions, prolonged culturing, or the stoichiom-
etry of the reprogramming factors [19,43,47]. Even the
same lines cultured in different laboratories can develop
laboratory-specific signatures [22,28]. There is thus
clearly still a great degree of method standardization
needed to achieve accurate comparisons, and care should
be taken when comparing results across studies.
While there is still significant work to be done to

standardize the culture and assays for stem cells and
Table 1 Summary of bioinformatic studies used in assessing i

Bioinformatic approach Distinguish
iPSCs from
ESCs?

Function
assay?

Gene expression profiling [14-17] Inconsistent
[19-24]

No

Epigenetic profiling [35,36] Inconsistent
[19,37,38]

No

Combinatorial profiling (methylation mapping
and gene expression signatures) [22,44]

Yes [22] No

Scorecard profiling (gene expression and
epigenetic measures with in vitro differentiation)
[22,45]

Yes [22,45] Yes

ESC, embryonic stem cell; iPSC, induced pluripotent stem cell.
their differentiation, there has been much progress in
the molecular and bioinformatic assays needed to moni-
tor these steps (Table 1). The speed and scale of these
assays is currently experiencing logarithmic growth,
thereby reducing costs [48]. Refining these assays will
greatly improve our ability to standardize the protocols
used for deriving iPSCs as well as their differentiation
into bona fide differentiated cell types needed for disease
modeling and cell therapies.
Regardless of the source of variation, better methods

are needed to assess pluripotency and the differentiation
potential of human pluripotent stem cells. These
methods will be particularly important in advancing the
use of stem cells for therapeutic intervention. The ineffi-
ciency of current methods for generating a consistent
core set of general-purpose iPSC lines severely limits the
interpretation of data generated from iPSCs. For in-
stance, iPSCs have recently been used to uncover 596
differentially expressed genes in schizophrenia, of which
only 25% had been previously implicated in the disorder,
but these data are confounded by variations in epigen-
etic memory that occur in iPSCs and possibly from cell
culture techniques that vary from laboratory to labora-
tory [49]. A recent publication on a phenotype for Rett
syndrome used only four fibroblast lines to report
changes in neuronal function in iPSCs derived from
these patients [50]. The development of cost-effective
strategies for assessing quality will greatly improve our
power to detect phenotypic differences in disease, par-
ticularly when quantitative traits are involved.
There are a number of therapeutic avenues for pluri-

potent stem cells. If the goal is to generate disease-
specific cells from patients in order to study disease
pathways and advance towards patient-specific interven-
tions, then high-throughput derivation, culture, and ana-
lysis protocols must be in place to reduce experimental
noise during phenotypic analysis. These protocols must
allow researchers to determine what lines have the least
amount of epigenetic variability and the highest propensity
nduced pluripotent and embryonic stem cell pluripotency

al Notes

No unique gene expression profile may be due to small sample
size or heterogeneity in iPSC quality. [19,20,28]

Further exploration of the functional consequences of epigenetic
alterations is needed. [33]

No functional differences have been linked to the detectible
differences in gene expression and DNA methylation used in these
studies

Differentiation propensity was linked to motor neuron
differentiation efficiency and functional relevance [22,45]
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for efficient and high yield differentiation. Additionally, in
order to create libraries of knockout iPSCs and ESCs to
study the roles of individual genes in disease, it is import-
ant to note which genes are highly variable from line to
line, and to eliminate lines with too much variability in
genes that may be important for function. This elimination
must be done on large numbers of lines across multiple pa-
tients, within a shorter time frame and more cost-
effectively than most protocols currently deliver. Alterna-
tively, for assessing the quality and consistency of cells
intended for transplantation, sensitive and robust assays
must be available to monitor these products for reliability.
For these purposes, algorithmic approaches such as those
discussed above may be the best available tools for re-
searchers to screen and scale multiple lines for regenerative
medicine applications.

Note
This article is part of a thematic series on Clinical applica-
tions of stem cells edited by Mahendra Rao. Other articles
in the series can be found online at http://stemcellres.
com/series/clinical.

Abbreviations
ESC: Embryonic stem cell; hESC: Human embryonic stem cell; iPSC: Induced
pluripotent stem cell; miRNA: MicroRNA.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors are grateful to members of the NYSCF Laboratory for critical
review of the manuscript. SAN’s laboratory is funded by the New York Stem
Cell Foundation, the Charles Evans Foundation, NYSTEM contract C024179
and C026185, and NIH sub-award 0255-5191-4609.

Published: 25 April 2013

References
1. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse

embryonic and adult fibroblast cultures by defined factors. Cell 2006,
126:663–676.

2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka
S: Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell 2007, 131:861–872.

3. Bilic J, Izpisua Belmonte JC: Concise review: Induced pluripotent stem
cells versus embryonic stem cells: close enough or yet too far apart?
Stem Cells 2012, 30:33–41.

4. Young RA: Control of the embryonic stem cell state. Cell 2011,
144:940–954.

5. Buganim Y, Faddah D, Cheng AW, Itskovich E, Markoulaki S, Ganz K, Klemm
SL, van Oudenaarden A, Jaenisch R: Single-cell expression analyses during
cellular reprogramming reveal an early stochastic and a late hierarchic
phase. Cell 2012, 150:1209–1222.

6. Meissner A, Wernig M, Jaenisch R: Direct reprogramming of genetically
unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007,
25:1177–1181.

7. Daley GQ, Lensch MW, Jaenisch R, Meissner A, Plath K, Yamanaka S: Broader
implications of defining standards for the pluripotency of iPSCs. Cell
Stem Cell 2009, 4:200–201. author reply 202.

8. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J: Stem cells.
Setting standards for human embryonic stem cells. Science 2003,
300:913–916.
9. Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G,
Kupriyanov S, Baldwin KK: Adult mice generated from induced pluripotent
stem cells. Nature 2009, 461:91–94.

10. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L,
Zeng F, Zhou Q: iPS cells produce viable mice through tetraploid
complementation. Nature 2009, 461:86–90.

11. Gokhale PJ, Andrews PW: The development of pluripotent stem cells. Curr
Opin Genet Dev 2012, 22:403–408.

12. Initiative TISC: Screening ethnically diverse human embryonic stem cells
identifies a chromosome 20 minimal amplicon conferring growth
advantage. Nat Biotechnol 2011, 29:1132–1144.

13. International Stem Cell Initiative, Adewumi O, Aflatoonian B, Ahrlund-Richter
L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan
S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov
I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K,
Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O,
et al: Characterization of human embryonic stem cell lines by the
international stem cell initiative. Nat Biotechnol 2007, 25:803–816.

14. Bhattacharya B, Miura T, Brandenberger R, Mejido J, Luo Y, Yang AX, Joshi
BH, Ginis I, Thies RS, Amit M, Lyons I, Condie BG, Itskovitz-Eldor J, Rao MS,
Puri RK: Gene expression in human embryonic stem cell lines: unique
molecular signature. Blood 2004, 103:2956–2964.

15. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH: Molecular
signature of human embryonic stem cells and its comparison with the
mouse. Dev Biol 2003, 260:404–413.

16. Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks
JD, Andrews PW, Brown PO, Thomson JA: Gene expression patterns in
human embryonic stem cells and human pluripotent germ cell tumors.
Proc Natl Acad Sci U S A 2003, 100:13350–13355.

17. Suárez-Fariñas M, Noggle SA, Heke M, Hemmati-Brivanlou A, Magnasco MO:
Comparing independent microarray studies: the case of human
embryonic stem cells. BMC Genomics 2005, 6:99.

18. Müller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS,
Shamir R, Schwartz PH, Schmidt NO, Loring JF: Regulatory networks define
phenotypic classes of human stem cell lines. Nature 2008, 455:401–405.

19. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan
G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N,
Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M,
Plath K, Lowry WE: Induced pluripotent stem cells and embryonic stem
cells are distinguished by gene expression signatures. Cell Stem Cell 2009,
5:111–123.

20. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K: A
high-efficiency system for the generation and study of human induced
pluripotent stem cells. Cell Stem Cell 2008, 3:340–345.

21. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak
A, Cooper O, Mitalipova M, Isacson O, Jaenisch R: Parkinson's disease
patient-derived induced pluripotent stem cells free of viral
reprogramming factors. Cell 2009, 136:964–977.

22. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft
GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A: Reference
maps of human ES and iPS cell variation enable high-throughput
characterization of pluripotent cell lines. Cell 2011, 144:439–452.

23. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-
Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R,
Ren B, Thomson JA, Evans RM, Ecker JR: Hotspots of aberrant epigenomic
reprogramming in human induced pluripotent stem cells. Nature 2011,
471:68–73.

24. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR:
Transcriptional signature and memory retention of human-induced
pluripotent stem cells. PLoS One 2009, 4:e7076.

25. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M,
Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM,
Daley GQ, Rinn JL: Large intergenic non-coding RNA-RoR modulates
reprogramming of human induced pluripotent stem cells. Nat Genet
2010, 42:1113–1117.

26. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T,
Shioda T, Hochedlinger K: Aberrant silencing of imprinted genes on
chromosome 12qF1 in mouse induced pluripotent stem cells. Nature
2010, 465:175–181.

27. Lakshmipathy U, Davila J, Hart RP: miRNA in pluripotent stem cells. Regen
Med 2010, 5:545–555.

http://stemcellres.com/series/clinical
http://stemcellres.com/series/clinical


Nestor and Noggle Stem Cell Research & Therapy 2013, 4:37 Page 7 of 7
http://stemcellres.com/content/4/2/37
28. Newman AM, Cooper JB: Lab-specific gene expression signatures in
pluripotent stem cells. Cell Stem Cell 2010, 7:258–262.

29. Rakyan VK, Down TA, Balding DJ, Beck S: Epigenome-wide association
studies for common human diseases. Nat Rev Genet 2011, 12:529–541.

30. Müller F-J, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP,
Danner S, Goldmann JE, Herbst A, Schmidt NO, Aldenhoff JB, Laurent LC,
Loring JF: A bioinformatic assay for pluripotency in human cells. Nat
Methods 2011, 8:315.

31. Macarthur BD, Sevilla A, Lenz M, Müller FJ, Schuldt BM, Schuppert AA,
Ridden SJ, Stumpf PS, Fidalgo M, Ma'ayan A, Wang J, Lemischka IR:
Nanog-dependent feedback loops regulate murine embryonic stem cell
heterogeneity. Nat Cell Biol 2012, 14:1139–1147.

32. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM,
Horvath TL, Vaccarino FM: Modeling human cortical development in vitro
using induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012,
109:12770–12775.

33. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I,
Müller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee
T, D'Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U,
Keirstead HS, Loring JF, Laurent LC: Recurrent variations in DNA
methylation in human pluripotent stem cells and their differentiated
derivatives. Cell Stem Cell 2012, 10:620–634.

34. Williams R, Schuldt B, Müller F-J: A guide to stem cell identification:
progress and challenges in system-wide predictive testing with complex
biomarkers. Bioessays 2011, 33:880–890.

35. Rada-Iglesias A, Wysocka J: Epigenomics of human embryonic stem cells
and induced pluripotent stem cells: insights into pluripotency and
implications for disease. Genome Med 2011, 3:36.

36. Sindhu C, Samavarchi-Tehrani P, Meissner A: Transcription factor-mediated
epigenetic reprogramming. J Biol Chem 2012, 287:30922–30931.

37. Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M,
Jaenisch R, Young RA: Chromatin structure and gene expression
programs of human embryonic and induced pluripotent stem cells.
Cell Stem Cell 2010, 7:249–257.

38. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S,
Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S,
Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B: Distinct
epigenomic landscapes of pluripotent and lineage-committed human
cells. Cell Stem Cell 2010, 6:479–491.

39. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery
JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V,
Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base
resolution show widespread epigenomic differences. Nature 2009,
462:315–322.

40. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J,
Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K,
Thomson J, Wang W, Gao Y, Zhang K: Targeted bisulfite sequencing
reveals changes in DNA methylation associated with nuclear
reprogramming. Nat Biotechnol 2009, 27:353–360.

41. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos
PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS,
Ramalho-Santos M: Incomplete DNA methylation underlies a
transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol
2011, 13:541–549.

42. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta
C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP: Differential
methylation of tissue- and cancer-specific CpG island shores
distinguishes human induced pluripotent stem cells, embryonic stem
cells and fibroblasts. Nat Genet 2009, 41:1350–1353.

43. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E,
Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T,
Hochedlinger K: Cell type of origin influences the molecular and
functional properties of mouse induced pluripotent stem cells. Nat
Biotechnol 2010, 28:848–855.

44. Bock C, Beerman I, Lien W-H, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E,
Rossi DJ, Meissner A: DNA methylation dynamics during in vivo
differentiation of blood and skin stem cells. Mol Cell 2012, 47:633–647.

45. Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, Wainger BJ,
Williams DJ, Kahler DJ, Yamaki M, Davidow L, Rodolfa CT, Dimos JT,
Mikkilineni S, MacDermott AB, Woolf CJ, Henderson CE, Wichterle H, Eggan
K: A functionally characterized test set of human induced pluripotent
stem cells. Nat Biotechnol 2011, 29:279–286.

46. Stefanova VT, Grifo JA, Hansis C: Derivation of novel genetically diverse
human embryonic stem cell lines. Stem Cells Dev 2012, 21:1559–1570.

47. Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, Ganz K,
Steine EJ, Cassady JP, Creyghton MP, Welstead GG, Gao Q, Jaenisch R:
Reprogramming factor stoichiometry influences the epigenetic state and
biological properties of induced pluripotent stem cells. Cell Stem Cell
2011, 9:588–598.

48. Ståhl PL, Lundeberg J: Toward the single-hour high-quality genome. Annu
Rev Biochem 2012, 81:359–378.

49. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu
Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH: Modelling schizophrenia
using human induced pluripotent stem cells. Nature 2011, 473:221–225.

50. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH,
Muotri AR: A model for neural development and treatment of Rett
syndrome using human induced pluripotent stem cells. Cell 2010,
143:527–539.

doi:10.1186/scrt185
Cite this article as: Nestor and Noggle: Standardization of human stem
cell pluripotency using bioinformatics. Stem Cell Research & Therapy 2013
4:37.


	Abstract
	Introduction
	Bioinformatic assays for pluripotency
	Gene expression profiling
	Epigenetic profiles
	The scorecard approach
	Conclusion
	Note
	Abbreviations
	Competing interests
	Acknowledgements
	References

