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Introduction

To identify the mechanisms underlying pluripotency, a 

number of studies have been carried out, and these have 

been recently summarized [1]. Th e fi rst two studies that 

characterized the ‘stemness gene’ list [2,3] identifi ed 

about 250 putative genes involved in mouse embryonic 

stem cell (mESC) pluripotency, and many other genes are 

being studied today [4-7]. While these experiments 

identifi ed many genes involved in maintenance of pluri-

potency, such as Oct-4, Nanog and Sox-2, they also 

usually showed that human ESCs (hESCs) are quite 

diff erent from each other [4,8-10]. A more comprehensive 

study showed that although closely related, the 59 ESC 

lines showed heterogeneity in gene expression [11]. 

Interestingly, variations in gene expression were found 

not only for genes correlated with the pluripotent state or 

diff erentiation, but also for housekeeping genes [12]. 

Th erefore, interactions among many genes likely form an 

active network that allows the pluripotent state to be 

main tained [13]. In addition, due to this variation between 

lines, better models need to be established to unders tand 

the true underlying mechanisms of pluripotency.

While gene regulatory networks that enhance our 

knowledge of pluripotency will help our understanding 

of stem cell biology, there are additional implications. As 

described below, ESCs are derived from the inner cell 

mass of a blastocyst [14,15]. Th erefore, the ESCs are 

closely related to the inner cell mass, from which, via 

post-implantation development, the embryo and fetus 

form. Th us, diff erentiation of ESCs recapitulates the 

earliest stages of human development, and understanding 
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the gene regulatory networks in these cells will enhance 

our knowledge of the regulation of the earliest stages of 

development.

Currently, we lack much information on specifi c stages 

in development. As described, all tissues of the embryo 

arise from the same cells; however, they are diff erent 

from each other, not only in their morphology and 

function, but also in their total DNA content. While 

somatic cells are diploid, gametes are only haploid. We 

have almost no knowledge on how these initial cells are 

selected and diff erentiated.

Another area that would benefi t from the delineation of 

pluripotent gene networks is the better understanding of 

reproductive mechanisms. While the sperm meets the 

egg to form the zygote, what gene expression in the egg 

allows the fi rst stages of development to proceed? Since 

in vitro fertilization (IVF) and other assisted reproductive 

technologies are so commonly used, can better under-

standing of these fi rst stages increase the effi  ciency of 

these technologies?

However, while ESC lines contribute to a chimera - 

which is when cells injected into a new blastocyst contri-

bute to all tissues in the newborn - epiblast lines do not. 

We have no understanding of the mechanisms that 

underline the diff erence between these two types of cells.

ESCs have been studied not only for cell replacement 

therapy or basic stem cell biology, but also as a tool for 

development of better and safer drugs. Since the ESC 

lines resemble, in many aspects, the developing fetus, 

they can be used as a fi rst and quick tool for drug screen-

ing without exposing pregnant mothers and their babies 

to harmful drugs. Th erefore, better understanding of 

gene regulatory networks that control these cells or allow 

them to diff erentiate under specifi c signals will allow the 

development of new therapies. Th ese therapies will be 

based on the fi nding of new targets and hence the 

development of treatments specifi cally for those targets 

and the processes they control.

Certain cancers have been suggested to have a stem cell 

origin. Treatment today is usually directed to the 

amplifying cell rather than to the source of the cancer. 

Hence, understanding of the gene networks that have 

changed from those in stem cells and have led to cancer 

will allow the development of new treatments for the 

cancer, and as described before, the development of 

specifi cally targeted molecules for these pathologies.

To summarize, understanding of the gene regulatory 

networks that enable a cell to maintain its pluripotent 

phenotype are of great interest today. Better understand-

ing of these networks will lead to better understanding of 

basic biology questions, the control of the specifi c 

diff erentiation of stem cells into target cells for cell 

replacement therapy, and the development of new drugs 

and treatments for cancer, among other diseases. Th is 

review summarizes our current knowledge of gene 

expres sion networks in non-human primates, which 

resem bles the human model and also has greater 

advantages.

Embryonic stem cells

ESCs are defi ned as a population of cells capable of self-

renewing while maintaining their pluripotency. ESCs 

diff erentiate and give rise to cells from all three germ 

layers: ectoderm, mesoderm and endoderm, including 

the pancreas [16]. Th ese cells are derived from the inner 

cell mass of mammalian blastocyst stage embryos [17,18]. 

While mESCs were cloned over three decades ago, we 

have only recently celebrated our fi rst decade of hESC 

derivation. Hence, our knowledge on hESCs is more 

limited than that on mESCs. While the two types of ESC 

share many features, such as the expression of the pluri-

potent marker OCT-4, they also diff er from each other, 

such as the dependency of mESCs on leukemia inhibitory 

factor (LIF) to maintain pluripotency. Presumably, 

therefore, pathways that contribute to both pluripotency 

as well as specifi c diff erentiation might diff er between 

mESCs and hESCs. Th us, our knowledge on gene 

expression in mESCs as well as their utilization for 

therapy must be verifi ed in hESCs.

Nuclear transfer

While ESCs can be diff erentiated into beta cells, utilizing 

them in human therapy poses a problem since they do 

not identically match the patient. Human ESC lines today 

were derived from ‘leftover’ blastocysts from IVF clinics. 

Hence, they might cause an immune reaction when 

trans planted into human patients. One possibility to 

overcome this problem is the generation of genetically 

similar ESCs to the patient. Th is process would require 

the use of the patient’s genome. While routinely carried 

out in mice, this process has been found to be more 

diffi  cult in other species. Nuclear transfer (NT; also 

termed therapeutic cloning) requires the enucleation of a 

donor egg and the removal of the spindle DNA. Into this 

enucleated egg a single diff erentiated cell, usually a 

fi broblast, is placed. Th e two cells fuse together, resulting 

in a single cell carrying the correct number of chromo-

somes. Th is cell then begins its development and will 

cleave until a blastocyst is formed, which contains an 

inner cell mass from which ESCs can be derived (termed 

NT-ESCs). For this process to succeed, a large number of 

processes are carried out within the cell, including 

reprogramming of the genome to an undiff erentiated 

state. It is this process that lowers the effi  ciency of NT-

derived blastocysts. Much is unknown about the results 

of reprogramming, and many theories have been 

developed, which are summarized by Yang and colleagues 

[19].

Ben-Yehudah et al. Stem Cell Research & Therapy 2010, 1:24 
http://stemcellres.com/content/1/3/24

Page 2 of 13



While the best known successful NT was Dolly the 

Sheep, derived by Sir Ian Wilmut [20], NT has been 

successful in many species, including dog, cat, mouse, 

cow, goat and others [21-23]. Recently, primate cells have 

been cloned, though with low effi  ciency [24]. Th ese 

results support the contention that human cells could 

also be generated by NT, though very signifi cant 

bioethical challenges remain. Th e reasons for the low 

effi  ciency of primate cloning are not clear, and better 

methods for cloning are being investigated.

A recent study showed that it would be diffi  cult to 

carry out intraspecies cloning [25]. In this method, 

enucleated animal eggs would be used to house the 

diff erentiated cells, thereby overcoming one of the major 

Figure 1: Ingenuity analysis identifi es novel gene networks involved in the maintenance of pluripotency. Genes over-expressed in non-

human primate embryonic stem cells compared to fi broblasts are depicted in red. Genes shaded in green are over-expressed in fi broblasts. 

Genes that were diff erentially expressed in both of two previous studies [1,117] could be identifi ed in this representative pathway. For this analysis 

we compared all genes with a known Entrez gene ID.
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hurdles of this process: the lack of suffi  cient numbers of 

donor eggs. However, the control experiments in this 

study were lacking. While the authors were able to 

demon strate that there was no development in the cloned 

intraspecies cells, they did not show their ability to clone 

human cells, raising questions about the effi  ciency of 

cloning in this study [25].

ESCs and NT-ESCs have been proposed as possible 

treatments for diseases such as Parkinson’s, Alzheimer’s, 

juvenile diabetes and others. Specifi cally, NT-ESCs as cell 

replacement therapy - that is, using NT to derive ESCs - 

have a great advantage when compared to fertilized 

ESCs. Patients could provide their own fi broblasts for the 

derivation of NT-ESCs, and the resulting line would be 

patient-specifi c. However, since this process uses donated 

eggs that contain mitochondrial DNA, these cells are not 

identical to the donor patient [26]. Th erefore, the newly 

derived ESCs are mostly genetically similar to the donor, 

and hence might be rejected when fully diff eren tiated 

cells are transplanted. In contrast, many patients could 

not (for gender reasons) and/or should not (for ethical 

reasons) [26,27] donate eggs for the derivation of 

fertilized ESCs, and even then the newly derived cells 

would only be similar but not identical to the fi broblast 

from which they were derived, while fertilized ESCs can 

be closely related to the donor only if the egg donor is the 

patient herself or a fi rst degree relative.

NT-ESCs and fertilized ESCs have been shown to have 

many similar properties, including the ability to diff eren-

tiate into cells from all three germ layers [28]. Since most 

diff erentiation procedures used for NT-ESCs will follow 

the same methods from fertilized ESCs, much emphasis 

is placed on generat ing NT-ESCs more effi  ciently, and 

other studies are carried out to improve the diff eren-

tiation procedures. As proof of principle, a number of 

publications have shown that NT-ESCs can be used for 

therapy. Th is was achieved in a Parkinson’s model [29] as 

well as a diabetic model in which NT-ESCs were 

diff erentiated into beta cells [30], thereby bridging the 

gap between the two routes of research. Th e method of 

diff er entiation for these NT-ESCs was based on protocols 

described previously [30]. Th ese cells were able to main-

tain normal glucose levels after transplantion into a diabetic 

mouse [30]; however, an increase in blood glucose levels 

was seen 8 weeks after transplantation, presumably 

because the cells were not fully diff erentiated beta cells.

Induced pluripotent stem cells

One major goal of stem cell research is the generation of 

patient-specifi c stem cells. While successful in mice [31], 

the derivation of genetically matched, patient-specifi c 

human ESCs using somatic cell NT (SCNT) has not yet 

been accomplished. Furthermore, the use of donor oocytes 

or pre-implantation embryos to derive patient-specifi c 

stem cells using techniques such as SCNT, cell fusion and 

parthenogenesis elicits ethical concerns. Th e recent 

advance in reprogramming adult somatic cells into ES-

like cells, termed induced pluripotent stem (iPS) cells, 

provides another avenue for generating patient-specifi c 

stem cells without the ethical concerns of other 

methodologies. Th us, iPS cell derivation is the latest 

innovation for generating large pools of patient-specifi c 

stem cells that can be used to treat a wide range of human 

diseases.

In 2006, Takahashi and Yamanaka [32] demonstrated 

that mouse embryonic fi broblasts and adult tip fi bro-

blasts could be reprogrammed into a pluripotent, ES-like 

state by transducing these cells with four transcription 

factors (Oct4, Sox2, Klf4 and c-Myc) along with a knock-

in Fbx15 neomycin-resistant reporter gene. After 2 weeks 

of culture, these mouse iPS cells exhibited similar 

characteristics to ESCs, such as alkaline phosphatase 

activity, expression of SSEA-1 and Nanog (two pluri-

potency markers), and the ability to diff erentiate into all 

three germ layers (endoderm, ectoderm and mesoderm) 

via in vitro diff erentiation or teratoma formation in 

immuno defi cient mice. While this ground-breaking 

research provided a proof-of-principle for the repro-

gram ming of adult somatic cells to ES-like cells, these iPS 

cells diff ered from ESCs in the genomic expression of 

several genes and the inability of the iPS cells to fully 

chimerize with donor mouse embryos. Shortly after the 

publication of this work, three groups showed that 

dispens ing with the reactivation of the Fbx15 reporter 

gene generated iPS cells that yielded fully chimerized 

pups following blastocyst injection and could contribute 

to germ cell transmission [33-35].

Recently, this work has been extended to human cells, 

as three groups originally demonstrated that human iPS 

cells could be generated from embryonic, neonatal and 

adult fi broblasts [36-38]. Like ESCs, these human iPS 

cells exhibited alkaline phosphatase activity, expressed 

SSEA-3, TRA-1-60, Oct4 and Nanog (human pluri-

potency markers) from endogenous loci, and exhibited a 

genomic profi le more similar to ESCs than the originating 

fi broblasts. Interestingly, two diff erent combinations of 

retrovirally introduced transcription factors were used: 

Oct4, Sox2, Klf4 and c-Myc were utilized by two groups 

[36,37], while Yu and colleagues [38] generated human 

iPS cells using Oct4, Sox2, Nanog and Lin28, an RNA 

binding protein that regulates synthesis of the let-7 family 

of microRNAs (miRNAs). Currently, this work has been 

repeated in several other labs and has included repro-

gramming of more terminally diff erentiated cells, such as 

pancreatic beta cells [39-42].

Th e potential for iPS cells to be utilized therapeutically 

has recently been examined [43]. In this study, 

researchers were able to ameliorate a mouse sickle-cell 
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anemia model by diff erentiating iPS cells into hemato-

poietic stem cells and re-introducing these cells back into 

the animal model [43]. Similarly, human iPS cells have 

been directly diff erentiated into motor neurons and 

insulin-secreting islet-like clusters in vitro [44,45]. While 

these results highlight the great promise for iPS cells in a 

clinical setting, transplanting iPS cells or diff erentiated 

iPS cells into humans carries a high risk. Around 20% of 

chimeric mice generated from iPS cells developed tumors 

within a 2- to 10-month time frame [34]. Th is fi nding is 

most likely due to the reactivation of c-Myc in iPS cells. 

While dispensing with c-Myc in iPS cell formation 

reduces the overall effi  ciency of obtaining iPS cell 

colonies, chimeric mice derived from these cells appear 

to be free of tumors [46,47]. However, aberrant expres-

sion of Oct4, Sox2, Klf4 and/or Nanog has been observed 

in a number of human malignancies [48-50]. Likewise, 

the random integration of the retroviruses could induce 

tumorigenesis by activating other oncogenic factors [51]. 

Because of these concerns, current research has been 

targeted at deriving iPS cells in a more clinically-friendly 

manner. Such protocols include using adenoviruses 

instead of retroviruses, and using miRNAs or a combi-

nation of chemical and genetic modifi cations to induce 

reprogramming [52-54]. While iPS cell derivation is years 

away from being utilized in a clinical setting, the proof-

of-principal results shown thus far indicate that iPS cells 

have the promise of treating a wide range of human 

disorders without the concern of immuno-rejection. 

Also, without requiring donor oocytes or pre-implan ta-

tion embryos, iPS cell technology reduces the ethical 

concerns about generating patient-specifi c, pluripotent 

stem cells (PSCs).

Germ cells

Another potential source of stem cells is derived from 

precursor germ cells. In early embryonic development, a 

subset of pluripotent cells diff erentiate into primordial 

germ cells (PGCs) [55,56]. Th ese cells migrate, proliferate 

and colonize the genital ridge and represent a population 

of cells that will eventually further diff erentiate to form 

gametes. Initially discovered in mice, failure of PGCs to 

mitotically arrest following colonization leads to the 

formation of teratomas, tumors that contain cells repre-

senting all three germ layers: ectoderm, mesoderm, and 

endoderm [57]. Th e fi rst isolations and cultures of these 

proliferating PGCs yielded a multipotent cell line termed 

embryonal carcinoma cells. Th ese cells are capable of 

being diff erentiated in culture into various cell types, 

including neurons and cardiomyocytes [58,59]. It was 

also shown that culture of isolated PGCs prior to genital 

ridge colonization resulted in germ cell colonies that 

express numerous pluripotency markers akin to those of 

ESCs, such as OCT-4 [60,61]. Th ese unique cells, termed 

embryonic germ cells (EGCs) were shown to be highly 

pluripotent. EGCs have previously been an interesting 

cell source for studying gametogenesis in vitro because 

mouse EGCs appear to follow similar diff erentiation 

patterns as observed in in vivo gametogenesis [62]. 

However, ethical concerns about obtaining human EGCs 

have tamed interest in this fi eld.

Several groups have shown the ability of mouse, non-

human primate and human ESCs to diff erentiate into 

germ cell lineages, specifi cally in vitro-derived PGCs 

(invPGCs) [63-79]. However, three groups in particular 

have demonstrated three diff erent methodologies for 

faithfully deriving invPGCs from ESCs at higher effi  ci-

encies [63-65]. Yamauchi and colleagues [64] successfully 

diff erentiated cynomolgus monkey ESCs into germ cells 

by forming embryoid bodies (EBs) with retinoic acid and 

culturing these EBs for 28 days. At day 28, germ cells 

could be identifi ed by positive immunostaining for 

SSEA1, VASA or DAZL. Furthermore, these researchers 

showed up-regulation of germ cell gene expression for 

CXCR4, NANOS1, NANOS2, NANOS3, VASA, PIWIL1 

and TEKT1 upon EB formation with retinoic acid for 

28  days. Likewise, this group was able to demonstrate 

that day 28 EBs grown in retinoic acid or bone 

morphogenetic protein (BMP)-4 elevated expression of 

the meiotic marker SCP1 but not SCP3. Kee and 

colleagues [63] showed that adherent diff erentiation with 

a BMP cocktail (BMP4, BMP7 and BMP8b) induced 

diff eren tiation of hESCs into invPGCs in 7 to 14 days. 

Using a green fl uorescent protein (GFP) transgene driven 

by the VASA promoter, these researchers showed that 

diff eren tiation medium supplemented with BMPs 

resulted in increased expres sion of two PGC markers in 

diff eren tiating hESCs: VASA and DAZL. Kee and 

colleagues also demonstrated that VASA-GFP+ cells 

could be isolated and cultured on mouse embryonic 

fi broblasts for 7 days to form invPGC colonies. Th ese 

cultured cells also exhibited hypomethylation of the H19 

locus, suggesting that these cells, like in vivo PGCs, 

undergo de-methy lation prior to gametogenic progres-

sion [63]. More importantly, Kee and colleagues demon-

strated that over expression of DAZ family members 

(DAZ, DAZL and BOULE) in cultured invPGCs induces 

meiotic progres sion as determined by immunofl uor-

escence staining for SCP3 and γH2AX [63]. Even more 

striking, they demonstrated haploid formation by over-

expression of the DAZL family members by the appear-

ance of a small 1N peak in their propidium iodide FACS 

analysis and the expression of acrosin in a small fraction 

of cells. Th is remarkable discovery highlights the poten-

tial of driving gametogenesis in vitro from PSCs [63].

More recently, Amander Clark’s group demonstrated a 

novel approach for rapidly and more effi  ciently diff eren-

tiating hESCs into PGCs. Park and colleagues [65] 
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showed that diff erentiation of hESCs on human fetal 

gonadal stromal cells signifi cantly improved germ cell 

diff erentiation. Strikingly, these researchers showed that 

c-kit+/SSEA1+/VASA+ invPGCs (5% of the total popu la-

tion of cells) could be isolated from diff erentiated hESCs 

as early as 3 days of culture on human fetal gonadal 

stromal cells. Similarly to Kee and colleagues, Park and 

colleagues demonstrated that invPGCs exhibit imprint 

erasures and show expression of a wide range of germ cell 

markers [63,65]. Th e work of Park and colleagues demon-

strates progress towards a highly effi  cient methodology 

for generating PGCs from ESCs in vitro [65]. Further-

more, Park and colleagues are the fi rst group to 

diff erentiate human iPS cells into early germ cell lineages. 

Th ese exciting results combined with the work of Kee 

and colleagues [63] and Yamauchi and colleagues [64] 

high light the similarities between in vivo PGCs and 

invPGCs illustrate the possibility of treating infertility by 

diff erentiating patient-matched ESCs into gametes or 

male germline stem cells for transplantation.

Th e ability to generate transplantable male germline 

stem cells or haploid gametes in culture has signifi cant 

therapeutic implications for couples with infertility 

[80,81]. Th e appeal of these approaches is enhanced by 

iPS cell and NT technologies, which would theoretically 

enable men to derive germline stem cells or sperm from 

their own skin cells in vitro. Th us, it is hypothetically 

possible for a man who is rendered infertile by toxic 

treatment for cancer (chemotherapy or radiation), and 

who did not cryopreserve semen prior to treatment, to 

father his own genetic children from germ cells derived 

from NT-ESCs or iPS cells. Th is potential can only be 

realized after extensive feasibility and safety studies are 

conducted, ideally in nonhuman primate models that are 

relevant to human physiology. Th ere is a lack of consen-

sus among species regarding the potential of PGCs to 

undergo spermatogenesis when introduced into semini-

ferous tubules (mouse PGCs can [82] and rat PGCs cannot 

(K Orwig, unpublished)). However, there is con sen sus in 

rodents and several large animal species that gono cytes 

and spermatogonia from neonate, pup and adult testes 

undergo spermatogenesis when trans planted into the 

testes of infertile recipients [82-87].  Human PSCs can be 

diff erentiated into PGCs in the context of EBs [70,88] or 

adherent diff erentiation cultures [63,65,67]. Similarly, two 

groups have reported macaque PSC to PGC diff eren tiation 

in EBs [64,89]. Th ere are no reports of PSC to spermato-

gonial stem cell (SSC) diff erentiation, but several studies 

have reported PSC diff erentiation to haploid germ cells 

[63,77,78], suggesting a transient transition through an 

SSC-like intermediate. Th us, direct diff erentiation of PSCs 

to SSCs would provide a source of transplantable cells that 

could be used to ask important questions about the safety 

and effi  cacy of PSC-derived cells.

Interestingly, the postnatal mammalian testis itself may 

provide an alternative source of PSCs that bypasses the 

need for an embryonic intermediate or genetic manipu-

lation. Several groups have shown the ability of germ cells 

in the mouse postnatal testis to produce PSCs in vitro 

[90-96]. Several recent studies have also provided 

evidence for PSCs derived from the adult human testis 

[97-100]. Th ese cells arise in vitro from spermatogonia 

and can give rise to tissues of all three embryonic germ 

layers. Given that germ cells are responsible for initiating 

embryogenesis, it seems possible that germ cell factors 

could infl uence their ability to become pluripotent (for 

example, including expression of genes associated with 

pluripotency). Among the genes that are thought to form 

a core regulatory network in ESCs (OCT4, SOX2, and 

NANOG) [101], only OCT-4 is expressed by a few 

postnatal germ cells or cultured SSCs. Several reports 

have described a relatively small group of normal mouse 

spermatogonia that express OCT-4, including those in 

the adult testis, which could potentially be those that 

have the capacity to produce PSCs in vitro [102-107]. In 

human spermatogonia, though, only a few postnatal 

spermatogonia retain embryonic-expressed OCT-4, and 

this expression is lost after the fi rst few months of infant 

life except in pathological conditions [108,109]. In 

cultured SSCs, Oct-4 mRNA and protein can be detected, 

albeit at substantially lower levels than in ESCs 

[90,95,110,111], and this feature may be required for 

long-term survival of SSCs in culture [112]. Th us, the 

mechanisms that predispose spermatogonia (presumably 

SSCs) to acquire a pluripotent phenotype in a culture 

dish are unclear, but may involve similar gene expression 

features with other pluripotent cells (ESCs).

Gene expression in non-human primate ESCs

Th ere are great challenges working with human ESC lines 

rather than ESC lines from pedigreed animals. While 

working with human ESC lines involves some ethical as 

well as religious issues, use of non-human primate ESC 

(nhpESC) lines alleviates many of these concerns. Our 

two groups have recently derived a large number of 

nhpESC lines, including from rhesus macaques and 

baboon, using both fertilized blastocysts and NT 

[9,113-118]. In addition, others have derived other 

monkey ESC lines, such as from marmoset [119]. Th ere 

are many other advantages in working with nhpESC 

compared to hESC lines: namely, the use of prime quality 

embryos as compared to left over human IVF embryos 

donated to science that usually either have genetic 

disorders [120] or lag in their development. In addition, 

since the donors of primate gametes are not anonymous, 

we have much information on the parents, as opposed to 

the anonymity of human donors. For these reasons we 

have closely examined the factors that defi ne a stem cell 
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line, including genes expressed, and compared them to 

the literature on gene and mRNA expression of human 

ESCs.

Using the newly derived nhpESC lines, we examined 

their gene expression [9] and found that they are very 

similar (>97%) to each other. We next compared the gene 

expression of these lines to that of two types of fi broblast: 

skin fi broblasts from the parents from which gametes 

were taken to derive the lines; and fi broblasts derived 

from teratomas generated by the injection of nhpESCs 

into severe combined immunodefi ciency (SCID) mice 

[1]. We found a unique set of genes that is diff erentially 

expressed between the nhpESCs and the two types of 

fi broblast. Interestingly, many of these genes were 

membrane-bound proteins and receptors [1] (Table  1). 

We have also shown that there are chromosomes that 

show an overabundance of over-expressed genes, such as 

chromosomes 16, 19 and X, which correlate to human 

chromosomes 17, 20 and X, respectively.

Our second study [114] has shown that there is indeed 

a unique set of genes in nhpESCs that maintains 

pluripotency, and that these diff erentially expressed 

genes are involved in many pathways. As expected, both 

studies revealed the over-expression of the ‘classic’ stem 

cell factors OCT-4, Nanog and Sox-2 (Table 1). Interest-

ingly, when imprinting was examined, the nhpESCs were 

found to have aberrant imprinting, the implications of 

which are unknown [121].

When the two studies are compared, as depicted in 

Table 1, many of the top diff erentially expressed genes are 

similar. Taking into account that these were two separate 

studies, the resemblance between the two gene lists is 

striking. While Ben-Yehudah and colleagues [1] com-

pared the gene expression of nhpESCs to fi broblasts and 

generated a list of genes over-expressed in ESCs, 

Mitalipov and colleagues [117] generated a list of genes 

that were highly expressed in a number of nhpESC lines. 

Out of the top 25 genes over-expressed in nhpESCs in 

both studies, 6 (24%) were found on both lists. As 

expected, genes known to be involved in maintenance, 

such as OCT-4 and Nanog, can be found on both lists. 

Additionally, PTPRZ1 is found on both lists; this gene has 

been shown to be expressed by hESCs and is down-

regulated upon diff erentiation. Depletion of PTPRZ1 

resulted in decreased colony formation and lower 

recovery of hESCs. However, the lists include genes that 

have yet to be associated with pluripotency, such as 

TACSTD1. TACSTD1, also called Ep-CAM, is an epi-

thelial adhesion molecule that was originally identifi ed as 

a marker of carcinomas and is also expressed by rat SSCs 

[122-124]. We found this gene to be the most 

diff erentially expressed gene between stem cells and 

fi broblasts, indicating that it might have other functions 

in signaling rather than solely adhesion. In addition, it 

should be pointed out that 40% of the genes on the list in 

Ben-Yehudah and colleagues [1] are hypo thetical; these 

genes may also play a signifi cant role in pluripotency.

When we compiled the data in Ben-Yehudah and 

colleagues [1] using Ingenuity software to identify system 

networks responsible for the regulation of the pluripotent 

state in nhpESCs, we were able to create many gene 

networks. Some of these networks contained anticipated 

candidate genes, including SOX2, OCT-4 and NANOG, as 

we have shown previously [1]. In addition we could 

identify networks that have been shown to be diff eren tially 

expressed between stem cells and fi broblasts, as depicted 

in Table 1. Th ese genes participate in networks that have 

yet to be associated with pluripotency. Although most of 

the genes depicted in Figure 1 and Table 1 are unidentifi ed 

or have not been associated with pluripotency, some were 

found to play roles in regulating the transition from 

pluripotency to diff erentiation; for example, the gene 

TACSTD1 is included in both Figure 1 and Table 1.

Since ESCs can serve as a method of studying 

development [125], much research has been carried out 

to understand the mechanisms that underlie regulation 

of this specifi c process, such as the gene regulatory 

networks that control pluripotency. Th ese regulatory 

networks have been studied in mice [126] and have 

revealed the importance of key regulators of the pluri-

potent state, including OCT-4, Sox-2 and Nanog. A 

comprehensive review described similar fi ndings in 

humans [127,128] and has also been discussed by us [1]. 

It should be pointed out that although many genes have 

been implicated in the networks controlling pluripotency, 

little is known about the networks controlling this 

process. An exception is the OCT-4/Sox-2/Nanog net-

work, which has been shown to be invaluable for main-

taining pluripotency. In our hands, we could identify the 

pluripotent genes and networks [1,24], but could not fi t 

all the diff erentially expressed genes into these networks 

or form new ones.

Imprinted genes in nhpESCs

While genes involved in pluripotency can be identifi ed and 

even gene regulatory networks can be described, other 

mechanisms controlling the expression of genes in 

pluripotent cells can be established - for example, epi-

genetic mechanisms that control gene expression in pluri-

potent cells. One such epigenetic mechanism is DNA 

methylation, which is considered a key factor in the 

formation of cellular memory and identity [129]. A 

comprehensive review summarized the key features of the 

regulatory mechanisms that control the trans crip tional 

regulatory features in hESCs [130,131], which 

complemented their work with ChIP-chip in mESCs [132].

Th e rhesus monkey is the only primate in which SCNT 

has been successful so far [133]. Th erefore, this model 
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can help answer questions on the epigenetic state of cells 

that undergo reprogramming - for example, whether they 

are closer to ESCs or to the somatic cell from which they 

originate. Th e answer to this question might shed light on 

why it is very diffi  cult for primate cells to undergo NT 

compared to mice and other animals. Th is could lead to 

improvements in primate NT.

We have recently compared DNA methylation in native 

ESCs, fi broblasts, and ESCs generated by SCNT [129]. 

We wished to examine if the SCNT cells undergo changes 

in methylation state that would resemble a stem cell 

rather than a somatic cell. We have identifi ed and com-

pared epigenome programming and reprogramming. 

Based on our previous knowledge, we have characterized 

hundreds of regions that are hyper- or hypomethylated in 

fi broblasts compared to native ESCs. We found that these 

regions are conserved in human cells and tissues. When 

ESCs were compared to the SCNT cells, we found to our 

surprise that the vast majority of these regions were 

reprogrammed in SCNT ESCs. Th e meaning of these 

phenomena is that these cells do indeed undergo repro-

gramming of their DNA methylation during SCNT. Th is 

reprogramming leads to an almost perfect corre lation 

between the epigenomic profi les of the native (ESC) and 

reprogrammed (NTSC) lines.

We also found that at least 58% of these changes are 

correlated in cis to transcription changes, Polycomb 

repressive complex-2 occupancy, or binding by the CTCF 

insulator [129].

As expected, since the process of adding or removing 

a methyl group from the DNA must be a complex 

process, we found that while epigenomic repro gram-

ming is extensive and globally accurate, the effi  ciency of 

adding and stripping DNA methylation during 

reprogramming is regionally variable. In several cases, 

this variability results in regions that remain methylated 

in a fi broblast-like pattern even after reprogramming 

[129].

Table 1. Twenty-fi ve genes over-expressed in Ben-Yehudah and colleagues [1] and Mitalipov and colleagues [117] 

 Top 25 over-expressed genes in [1]   Top 25 over-expressed genes in [117]

 Aff ymetrix ProbeSet ID  Gene symbol  Aff ymetrix ProbeSet ID  Gene symbol

1 MmuSTS.2870.1.S1_at TACSTD1  MmuSTS.3741.1.S1_at PTPRZ1

2 MmugDNA.35532.1.S1_at LOC697750  MmugDNA.32128.1.S1_at NANOG

3 MmuSTS.4178.1.S1_at CTSL2  MmugDNA.33796.1.S1_s_at FLJ16517

4 MmugDNA.17159.1.S1_at NFE2L3  MmugDNA.12465.1.S1_at LIN28

5 MmugDNA.20158.1.S1_at NELL2  MmuSTS.1454.1.S1_at MAL2

6 MmugDNA.11043.1.S1_at LOC705355  MmuSTS.2862.1.S1_at SPP1

7 MmunewRS.431.1.S1_at NPY1R  MmuSTS.3364.1.S1_at PDZK1

8 MmuSTS.2285.1.S1_at POU5F1  MmugDNA.37987.1.S1_at SALL1

9 MmunewRS.475.1.S1_at LOC703107  MmuSTS.1929.1.S1_at MYCN

10 MmugDNA.24757.1.S1_at LOC702395  MmugDNA.20158.1.S1_at NELL2

11 MmuSTS.3573.1.S1_at PCDH8  MmuSTS.2870.1.S1_at TACSTD1

12 MmuSTS.3621.1.S1_at CHGB  MmugDNA.17017.1.S1_at OTX2

13 MmuSTS.4813.1.S1_at GABRB3  MmugDNA.24774.1.S1_s_at APOA1

14 MmugDNA.38382.1.S1_at LOC696162  MmuSTS.1037.1.S1_at SH3GL3

15 MmugDNA.41477.1.S1_at NLGN4X  MmugDNA.11977.1.S1_at MBD2

16 MmugDNA.17159.1.S1_s_at NFE2L3  MmugDNA.33242.1.S1_at PODXL

17 MmugDNA.19721.1.S1_at LOC696085  MmugDNA.6117.1.S1_at CECR2

18 MmuSTS.3827.1.S1_at LOC696132  MmuSTS.4090.1.S1_at EBAF

19 MmugDNA.32128.1.S1_at Nanog  MmugDNA.36148.1.S1_at CYP26A1

20 MmugDNA.27729.1.S1_at SOX2  MmuSTS.2285.1.S1_at POU5F1

21 MmuSTS.3741.1.S1_at PTPRZ1  MmugDNA.3748.1.S1_at LOC112868

22 MmugDNA.7641.1.S1_at LOC712710  MmugDNA.32848.1.S1_at ST8SIA4

23 MmugDNA.33796.1.S1_s_at LOC696130  MmuSTS.214.1.S1_at ZIC3

24 MmugDNA.26523.1.S1_s_at NFE2L3  MmuSTS.1436.1.S1_at LCK

25 MmugDNA.31842.1.S1_s_at LOC696002  MmuSTS.4824.1.S1_at GDF3

Underlined genes are those diff erentially expressed in both studies; genes in bold are as yet uncharacterized genes. 
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Small RNAs and other RNAs

We have carried out many systems analyses using 

Ingenuity, as described in Figure 1. Th ese usually identi-

fi ed networks not directly associated with pluripotency. 

However, we could occasionally identify a connection 

between genes associated with pluripotency and unique 

genes. One example is depicted in Figure 2. While Sox2 

and Nanog are expressed in pluripotent cells (red), they 

are also associated with the gene NCRNA00094. Th is 

gene has been shown previously to be a non-coding 

RNA with unknown activity that is expressed in ESCs 

[134].

NCRNA00094 is an example of a large number of non-

coding RNAs that might play a role in maintaining 

pluripotency. One subtype of non-coding RNAs that has 

been shown to participate in this process is the miRNAs. 

miRNAs are short non-coding RNA sequences that 

control gene expression by inhibiting the translation of 

specifi c mRNAs or causing their degradation [135,136]. 

Hence, several studies have been carried out to fi nd 

miRNAs involved in the maintenance of pluripotency in 

ESCs. Using mathematical and statistical tools, a recent 

study [137] identifi ed miRNAs that might be involved in 

pluripotency. A similar study was carried out in mESCs 

[138,139] and hESCs [140-142]. When diff erent types of 

human adult and ESCs are compared, a number of 

miRNAs seem to be involved in this process, such as 

miR302 [53,136,142-144]. Specifi cally, one study showed 

Figure 2. Non-coding RNAs can be identifi ed as members of pluripotent pathways using Ingenuity. Ingenuity analysis shows that genes 

known to be involved in stemness (Nanog and Sox-2) are over-expressed (red) in non-human primate embryonic stem cells (nhpESCs) compared 

to fi broblasts. In addition, we could identify non-coding RNAs that were over-expressed in nhpESCs and associated with Nanog. For this analysis we 

compared all genes with a known Entrez gene ID.
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a connection between the ‘stem cell factors’ and miRNAs 

that inhibit them [145]. However, more work has to be 

done to identify their specifi c targets and actions, such as 

the crosstalk between stem cell factors and miRNAs, as 

in the case of Lin-28 and Let7, for example [139].

A comprehensive comparison of gene and RNA profi les 

of mouse fertilized and SCNT lines has been carried out 

recently [146]. Th ey found that the two types of ESCs 

have similar miRNA and protein expression profi les. 

Th ey conclude that this phenomenon is consistent with 

their similar developmental potentials and might result 

from their similar transcriptional profi les.

While much research has been conducted on miRNA 

involvement in pluripotency in hESCs and mESCs, this 

has been little studied in the monkey. A recent study by 

some of us [137] has computationally searched the rhesus 

genome to identify novel miRNAs involved in pluri-

potency by homology to human miRNAs. Th is study 

identifi ed 383 novel miRNAs: 173 have 100% homology 

to human miRNAs and 281 have >90% homology in the 

seed sequence of the miRNAs [137]. Th is study also 

identifi ed miRNAs that are involved in human ESC 

pluripotency, such as miR302, as described above.

Conclusions

In this review we have summarized our and other results 

from the past decade on the generation of nhpESCs, 

SCNT, the generation of iPS cells and our work on 

primordial germ cells. All these fi elds of research cumu-

latively enhance our understanding of the early stages of 

human development. Th ese exciting results, together 

with our results on gene expression in rhesus macaques 

and other primates, open the possibility of studying the 

gene expres sion and its control by miRNAs that results in 

the undiff erentiated state of ESCs. Moreover, these studies 

may lead to better understanding of the mecha nisms 

behind processes such as induced pluripotency, the 

knowledge of which could be used to test cellular therapies 

in nonhuman primates before introduction in humans.
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