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Abstract

Introduction: Knowing the repertoire of cell signaling receptors would provide pivotal insight into the
developmental and regenerative capabilities of bone marrow cell (BMC)-derived hematopoietic stem/progenitor
cells (HSPCs) and bone marrow mesenchymal stromal cells (BMMSCs).

Methods: Murine HSPCs were enriched from fluorescence-activated cell sorting (FACS)-sorted Lin–c-Kit+Sca-1+

BMCs isolated from the tibia and femoral marrow compartments. Purified BMMSCs (CD73+, CD90+, CD105+, and
CD45–, CD34–, CD31–, c-Kit–) with extensive self-renewal potential and multilineage differentiation capacity
(into different mesodermal cell lineages including osteocytes, chrondrocytes, adipocytes) were derived from
adherent BMC cultures after CD45+ cell depletion. Adherent colony-forming cells were passaged two to three times
and FACS analysis was used to assess cell purity and validate cell-specific surface marker phenotype prior to
experimentation. Gene transcripts for a number of cell signaling molecules were assessed using a custom
quantitative real-time RT-PCR low-density microarray (94 genes; TaqMan® technology).

Results: We identified 16 mRNA transcripts that were specifically expressed in BMC-derived HSPC (including Ptprc,
c-Kit, Csf3r, Csf2rb2, Ccr4, Cxcr3 and Tie-1), and 14 transcripts specifically expressed in BMMSCs (including Pdgfra,
Ddr2, Ngfr, Mst1r, Fgfr2, Epha3, and Ephb3). We also identified 27 transcripts that were specifically upregulated
(≥2-fold expression) in BMMSCs relative to HSPCs (Axl, Bmpr1a, Met, Pdgfrb, Fgfr1, Mertk, Cmkor1, Egfr, Epha7, and
Ephb4), and 19 transcripts that were specifically upregulated in HSPCs relative to BMMSCs (Ccr1, Csf1r, Csf2ra, Epor,
IL6ra, and IL7r). Eleven transcripts were equally expressed (<2-fold upregulation) in HSPCs and BMMSCs (Flt1, Insr,
Kdr, Jak1, Agtrl1, Ccr3, Ednrb, Il3ra, Hoxb4, Tnfrsf1a, and Abcb1b), whilst another seven transcripts (Epha6, Epha8,
Musk, Ntrk2, Ros1, Srms, and Tnk1) were not expressed in either cell population.

Conclusions: We demonstrate that besides their unique immunophenotype and functional differences, BMC-derived
HSPCs and BMMSCs have different molecular receptor signaling transcript profiles linked to cell survival, growth, cell
differentiation status, growth factor/cytokine production and genes involved in cell migration/trafficking/adhesion that
may be critical to maintain their pluripotency, plasticity, and stem cell function.
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Introduction
Adult stem cells are rare cell populations within specific
tissues defined by their ability to undergo both self-renewal
and differentiation. These tissue-specific stem cells are
responsible for maintaining, generating, and replacing
terminally differentiated cells of their host tissue as a
consequence of physiologic cell turnover and or tissue
damage due to injury [1,2]. Hematopoietic stem/progenitor
cells (HSPCs) are functionally defined by their ability
to self-renew and to contribute to all mature blood cell
lineages [3]. Interestingly, HSPCs may contribute to non-
hematopoietic tissues including the muscle, heart, brain
and gut [4-7], which suggests an immense plasticity of
differentiation and has raised the possibility of their
use in tissue repair–regeneration [2]. Additionally, bone
marrow and virtually all postnatal tissues contain small
numbers of self-renewal multipotent adherent stromal–
mesenchymal stem cells (MSCs) that have the potential
to give rise to cells of diverse cell lineages, play a pivotal
role in tissue repair–regeneration and have demonstrated
nonimmunogenicity and potent immunomodulatory effects
[8-10]. Furthermore, bone marrow-derived MSC (BMMSCs)
have been shown to facilitate the in vivo engraftment of
HSPCs and expansion of HSPCs in co-culture systems
when used as feeder cells [11,12].
The self-renewal and differentiation of stem cells is

probably subject to external modulation through receptors
for a wide range of mediators including growth factors,
cytokines, and chemokines. Furthermore, the potential
diverse developmental plasticity of both HSPCs and
BMMSCs to repair–replace damaged tissue suggests that
local environmental factors and extrinsic influences drive
stem cell differentiation and determine the function fate
of these cells. Identification of the factors at the cellular
and molecular levels that regulate the survival, proliferation,
and development of these cells remains of key importance
in identifying and propagating clinically relevant cell
populations with diverse pathways of differentiation and
therapeutic immunoregulatory potential.
Protein tyrosine kinase (PTK) networks are essential

components of cell signaling pathways and play critical
roles in cell proliferation, growth, development, metabol-
ism and anti-apoptotic signaling, wherein they function to
detect, amplify, filter and process environmental as well
as intercellular signals [13]. PTKs include both transmem-
brane receptor tyrosine kinases (RTKs) and soluble cyto-
plasmic enzymes known as non-RTKs. In humans, 90
PTKs have been identified to date, comprising 58 RTKs
and 32 non-RTKs [14]. Expression of most PTKs may be
tightly regulated to retain unique features of a specific
cell type. Characterizing the repertoire of high-affinity
cell surface receptors for many growth factors, cytokines,
chemokines and hormones might lead to be better under-
standing of the molecular phenotype and cell signaling
pathways underlying the functional distinctions of bone
marrow-derived HSPC and BMMSC populations.
The transcriptome of adult HSPCs and stromal stem/

progenitor cells has been previously studied by other
groups using high-density cDNA microarray hybridization
techniques to comparatively decipher genes in undifferen-
tiated cells and in developmentally regulated cell types
involving various cellular processes including cell cycle, cell
differentiation and cell proliferation [15-18]. Moreover, Son
and colleagues investigated the expression profiles of PTK
genes in undifferentiated and differentiated human embry-
onic stem cells [19]. High-density microarrays are an excel-
lent tool for initial target discovery, but not the best tool for
evaluating differential gene expression, whereas RT-PCR is
often referred to as the gold standard for gene expression
measurements [20,21]. In this study, we compared the gene
expression profile of mRNA transcripts associated with
signal transduction in bone marrow-derived undifferentiated
highly purified Lin–ckit+Sca-1+ cells (LKSs) with BMMSCs
using quantitative real-time RT-PCR (qRT-PCR), TaqMan®
low-density array analysis (96 genes of interest including
controls). Both sets of cells significantly differed in ex-
pression of key transcripts for RTKs, non-RTKs, cytokine-
growth receptors, G-protein coupled receptors, and several
other cell signaling molecules.

Methods
Animals
Five-week-old to six-week-old BALB/c mice were purchased
from the National Cancer Institute (Fredrick, MD, USA)
and housed in pathogen-free animal facilities at the Walter
Reed Army Institute of Research (Silver Spring, MD, USA),
which is accredited by the Association for the Assessment
and Accreditation of Laboratory Animal Care International.
All procedures were conducted using facilities and protocol
approved by the Animal Care and Use Committee of Walter
Reed Army Institute of Research (protocol #K07-05). Mice
were housed five animals per cage prior to use. Mice were
used for experimentation at 8 to 12 weeks of age. Animal
rooms were maintained at 21 ± 2°C with 50 ± 10% humidity
on a 12-hour light/dark cycle. Commercial rodent ration
(Harlan Teklad Rodent Diet 8604;) was available freely,
as was acidified (pH 2.5) water to prevent opportunistic
infections.

Isolation of hematopoietic stem/progenitor cells
Purified HSPCs were obtained by the modification of the
method described by Davis and colleagues [22]. Briefly,
three mice were killed and the femurs and tibias were
aseptically removed per experiment (n = 6 separate ex-
periments). Bone marrow cells (BMCs) were flushed
from the shaft with wash buffer consisting of Dulbecco’s
phosphate-buffered saline supplemented with 2% heat-
inactivated fetal calf serum (Hyclone, Logan, UT, USA),
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and penicillin (100 U/ml) and streptomycin (100 μg/ml)
(culture reagents from Invitrogen, Rockville, MD, USA).
BMCs were filtered through a nylon-mesh 70 μm cell
strainer filter (BD Biosciences, San Diego, CA, USA) to
produce a single cell suspension. After washing, BMCs
were treated with ACK lysing buffer (NH4Cl; Invitrogen)
and then incubated in a lineage antibody cocktail of biotin-
conjugated anti-mouse mAbs specific for CD4, CD8,
CD45RA/B220, CD11b, Gr-1 and Ter-119 (Miltenyi
Biotec, Auburn, CA, USA) for 15 minutes at 4 to 12°C.
After wash and cell resuspension steps, labeled Lin+ cells
were incubated with anti-biotin magnetic microbeads
and depleted by magnetic cell sorting (Miltenyi Biotec).
Collected lineage-negative cells (Lin–) were then stained
either with rat anti-mouse phycoerythrin (PE)-conjugated
CD117 (c-Kit), APC-Cy7-conjugated CD45, fluorescein
isothiocyanate (FITC)-conjugated Ly-6A/E (Sca-1) anti-
bodies and PerCP-conjugated streptavidin to detect residual
Lin+ cells or with control isotype-matched irrelevant
mAbs labeled with the corresponding fluorochromes
(BD-Pharmingen, San Diego, CA, USA). Cell sorting for
LKSs was performed using a BD fluorescence-activated cell
sorting (FACS) Aria II flow cytometer (Becton Dickinson,
San Jose, CA, USA). Reflow analysis of sorted cells to
check purity verified that the sorted LKS preparations
were 97.1 ± 1.32% pure (n = 6).
Isolation, culture and identification of bone marrow
mesenchymal stromal cells
BMMSCs were isolated and cultured using standard
protocols [17,23,24]. In brief, erythrocyte-depleted BMCs
were plated at a density of 4 × 105 cells/cm2 in MesenCult
(StemCell Technologies, Vancouver, BC, Canada) supple-
mented with 100 IU/ml penicillin and 100 μg/ml strepto-
mycin (Invitrogen, Gaithersburg, MD, USA) in a fully
humidified atmosphere of 5% CO2 in air at 37°C. Culture
medium was changed after 24 hours to remove non-
adherent cells. Fresh medium was subsequently replaced
every 3 days. After 7 days, adherent colony-forming
cells were trypsinized, harvested, and immunodepleted
of FITC-labeled CD11b+, CD14+ and CD45+ cells using
anti-FITC magnetic microbeads (Miltenyi Biotec) ac-
cording to the manufacturer’s instructions. CD45– cells
were replated at a density of 5,000 cells/cm2, expanded
and passaged weekly for an additional 2 to 3 weeks. Cell
purity was assessed by FACS analysis using fluorchrome-
labeled antibodies against CD3, CD11b, CD14, CD19,
CD31, CD34, CD105, CD106, CD133, CD25, CD44,
CD45, CD73, CD80, CD86, CD90, Flk-1, c-Kit, Sca-1,
MHC class I and MHC class II (Pharmingen/Becton
Dickinson, San Diego, CA USA). BMMSCs at the time
of experimentation were >99% CD45– based on FACS
analysis.
Differentiation of bone marrow mesenchymal stromal
cells in vitro
Osteogenesis
Osteoblastic differentiation was induced with slight modifi-
cation of a previously published protocol [23], by culturing
confluent BMMSCs for 3 weeks in complete MesenCult
medium (StemCell Technologies) supplemented with 10–8

M dexamethasone, 5 mM β-glycerophosphate, and 50 μg/
ml ascorbic acid. All osteogenic supplements were obtained
from StemCell Technologies. Cultures were incubated at
37°C in a humidified atmosphere of air with 5% CO2. Cul-
ture medium was exchanged every third day for 3 weeks.
Osteogenic differentiation, for secreted calcified extracellu-
lar matrix, was detected by Alizarin red staining [23,24].

Adipogenesis
Confluent culture BMMSCs were cultured for 3 weeks in
complete MesenCult medium (StemCell Technologies)
supplemented with 10–8 M dexamethasone and 5 μg/ml
insulin. All adipogenic supplements were obtained from
Sigma-Aldrich (St Louis, MO, USA). Cultures were incu-
bated at 37°C in a humidified atmosphere of air with
5% CO2. Culture medium was exchanged every third
day for 3 weeks. Adipogenesis was detected by Oil red O
staining [23,24].

Chondrogenesis
BMMSCs were grown in micromass culture pellets in
chondrogenesis induction medium as previously described
[25]. Briefly, BMMSCs were seeded as 20 μl drops of
(1.6 × 105 cells/drop) onto the center of each well of a
six-well culture plate and allowed to attach at 37°C for
2 hours. Subsequently, attached MSC nodules were fed
chondrogenic medium containing MesenCult medium
(StemCell Technologies) supplemented with 10–8 M dexa-
methasone, 6.25 μg/ml insulin, 50 μg/ml ascorbic acid,1
mM sodium pyruvate, 40 μg/ml proline, 50 mg/ml ITS +
Premix (these six reagents purchased from Sigma-Aldrich),
and 10 ng/ml transforming growth factor beta-1 (Peprotech,
Rocky Hill, NJ, USA). Cultures were incubated at 37°C
in a humidified atmosphere of air with 5% CO2. Culture
medium was exchanged every third day for 3 weeks.
Chondrogenic differentiation was detected by Alcian blue
staining (Sigma-Aldrich).

RNA extraction
Total RNA was extracted from freshly isolated bone
marrow-derived HSPCs (LKSs) and in vitro cultured
BMMSCs (passage 2 to 3) as previously described [26].
Briefly, pelleted cells from six independent experimental
samples were isolated from pooled BMCs collected
from three individual mice. Pelleted cells for each sample
were homogenized in Trizol reagent (Invitrogen, Carlsbad,
CA, USA) and total RNA was isolated using the standard
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trizol–chloroform–ethanol extraction procedure. RNA’s
were resuspended in 15 μl of 10 mM Tris buffer, pH 7.5.
Sample purity, quantity, and quality were assessed by deter-
mining the A260/280 and A260/230 ratios on a Nanodrop Spec-
trophotometer (NanoDrop Technologies Inc., Wilmington,
DE, USA) and by measuring the 28S/18S ribosomal RNA
ratio and RNA Integrity Number using an Agilent 2100
BioAnalyzer (Agilent Technologies Inc., Santa Clara, CA,
USA). All Agilent RNA integrity values were ≥8.5. Reverse
transcription was performed with a Roche 1st Strand Syn-
thesis kit (Roche Diagnostics Corporation, Indianapolis,
IN, USA). Briefly, 2.5 μg RNA sample was added to a
master mix containing 1× reaction buffer, 5 mM MgCl2,
1 mM deoxynucleotide mix, 6.4 μg random primers,
100 units RNase inhibitor, and 40 units AMV reverse
transcriptase. Then 10 mM Tris buffer, pH 7.5, was used to
reach the 40 μl final reaction volume. The final reaction
mixture was then subjected to a single reverse-transcription
cycle of 25°C for 10 minutes, 42°C for 60 minutes, 99°C
for 5 minutes, and 4°C for at least 10 minutes.

Real-time quantitative PCR gene profiling for cell
signaling mRNA transcripts
qRT-PCR was performed using the ABI Prism 7900HT
Sequence Detection System (Applied Biosystems, Foster
City, CA, USA). Custom-designed Protein Tyrosine Kinase
TaqMan® Low Density Array cards (Applied Biosystems)
were used to assess gene expression of key transcripts for
RTKs, non-RTKs, cytokine-growth receptors, G-protein
coupled receptors, and several other cell signaling mole-
cules. Gene targets were selected based on an extensive
review of the literature for well-validated gene expression
markers and the availability of Assay of Demand commer-
cial primers (Applied Biosystems). The set of TaqMan® Low
Density Array cards was comprised of 96 individual target
assays (including respective forward and reverse primers
and a dual-labeled probe (5′-6-FAM; 3′-MGB) in quadru-
plicate on a 384-well card (96 genes per card including
two housekeeping genes, 18S and GAPDH). Amplification
parameters were as follows: one cycle of 50°C for 2 minutes
and 95°C for 10 minutes followed by 40 cycles of 95°C for
30 seconds and 60°C for 1 minute.

RT-PCR data analysis
RT-PCR data were analyzed using the Sequence Detection
System version 2.1 included with the ABI Prism 7900HT
SDS and Microsoft Excel. The threshold was manually set
and the baseline was set automatically to obtain the
threshold cycle (Ct) value for each target. 18S ribosomal
RNA was used as an endogenous housekeeping control
gene for normalization. Six independent HSPC and
BMBMC experimental samples were run in duplicate
wherein Ct measurements per samples were normalized
using 18S. Relative expression between HSPCs and
BMMSCs was determined using the comparative Ct

method (2–ΔΔCt) [27,28]. Results are expressed as the
mean ± standard deviation difference in relative expression.
Transcription of a particular gene transcript in BMMSCs
was considered to be differentially upregulated or down-
regulated if it was differentially expressed by at least twofold
when compared with the expression level in HSPCs, and
vice versa for the reverse analysis. Assays with Ct values
greater than 35 cycles were excluded from analysis.

Validation of qRT-PCR results using FACS analysis for cell
surface protein expression
LKSs (HSPCs) and BMMSCs were stained with rat anti-
mouse CD45-PE/FITC, Sca-1-PE, c-Kit-FITC, and Flk1-
PE (Pharmingen/Becton Dickinson) or rabbit polyclonal
anti-human DDR2 (H-108, cross-reacts with mouse), rat
anti-mouse PDGFR-α (RM0004-3G28; Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), primary antibodies followed
by PE-labeled goat anti-rabbit and goat anti-rat secondary
antibodies, respectively (Pharmingen/Becton Dickinson).

Statistical analyses
For each mRNA measured in qRT-PCR, replicate Ct values
for six biological samples were averaged to obtain the
mean and standard error of the mean. A paired two-tailed
t test (analysis of variance) was performed to determine
whether the expression was different between the HSPCs
and BMBMCs. Individual genes were identified as differen-
tially expressed with ≥2-fold difference between cell types
and P ≤0.05. Data were analyzed using GraphPad Prism
version 4.01 (GraphPad Software, San Diego, CA, USA).

Results
Bone marrow-derived HSPC and MSC populations
To obtain accurate and consistent gene transcription
profiles of bone marrow-derived HSPC and MSC popu-
lations, we isolated and used highly purified cell popula-
tions. Practically all HSPC activity has been shown to
be contained within the LKS BMC compartment, which
represents 0.05 to 0.1% of total BMCs [29]. LKS cells were
isolated by lineage-negative selection (pooled bone mar-
row from three mice, n = 6 separate experiments)
followed by double FACS sorting to high purities (98 ±
1.32%; Figure 1A-D). Total RNA from a total of six individ-
ual LKS samples was extracted to conduct qRT-PCR gene
profiling for cell signaling transcripts in duplicate using a
custom-designed Cell Signaling TaqMan® Low Density
Array. For each mRNA measured in qRT-PCR, gene ex-
pression values were averaged across six biological sam-
ples run in technical replicates.
Plastic adherent bone marrow stromal cells were isolated

from pooled bone marrow from three mice, propagated for
1 week, hematopoietic cell depleted, and expanded further
in vitro for 2 to 3 weeks, at which time they reached a



Figure 1 Enrichment of murine bone marrow hematopoietic stem/progenitor (Lin–c-kit+Sca-1+) cells by fluorescence-activated cell
sorting. Lin– bone marrow cells (A) were fluorescence-activated cell sorted for cells expressing high levels of c-kit and Sca-1 (B). Dot plots
showing the purity of resorted c-Kit+ CD45+ cells (C) and Sca-1+ c-Kit+ cells (D). Representative results of six independent HSPC cell sorting
preparations are shown. FCS, fetal calf serum; FITC, fluorescein isothiocyanate; PE, phycoerythrin.
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stable MSC phenotype by FACS analysis (Figure 2) positive
for known stromal–mesenchymal markers such as CD44,
CD73, CD90, CD105, and MHC class I and negative for
the hematopoietic cell lineage markers including CD45,
CD11b, CD14, CD34, MHC class II and CD31. BMMSCs
expressed low levels of CD106, Flk-1 and CD133 and were
negative for CD3, CD25, CD19, c-Kit (CD117) and for
costimulatory molecules CD80 and CD86 (data not
shown). To establish that these cells are true MSCs, cells
were cultured under various induction conditions to assess
their capacity to differentiate into a number of mesodermal
lineages. As illustrated in Figure 3, BMMSCs display a
multilineage differentiation capacity toward the adipogenic,
osteogenic and chondrogenic cell lineages.

Expression profile of receptor tyrosine kinase genes
To compare gene expression levels within purified HSPC
and BMMSC populations, RNA samples from six separate
pooled experimental samples were prepared and key tran-
scripts for RTKs, non-RTKs, cytokine-growth receptors,
G-protein coupled receptors, and several other cell signal-
ing molecules were assayed in duplicate using qRT-PCR.
In rodents, 58 RTKs have been identified. In our study, 37
primer/probe sets for RTK transcripts were included in
a customized TaqMan® gene expression array card of
total 96 genes (Table 1). Out of these 37 RTK genes,
only Aatk (apoptosis associated tyrosine kinase) and
Csf1r (colony-stimulating factor 1 receptor) were over
expressed, 2.5-fold and 197-fold respectively, in HSPCs in
comparison with BMMSCs. In contrast to HSPCs, tran-
scripts for 13 RTK genes (Axl, Mertk, Tyro3, Epha1,
Epha2, Epha4, Epha7, Ephb4, Egfr, Fgfr1, Pdgfrb, Met and
Ret) were overexpressed 3-fold to 819-fold in BMMSCs.
Four RTK transcripts uniquely expressed by HSPCs were
Flt3 (FMS-like tyrosine kinase 3), Kit (kit oncogene), Tek
(endothelial-specific RTK) and Tie1, whereas Ddr1, Ddr2,
Epha3, Ephb3, Fgfr2, Fgfr3, Pdgfra, Mst1r, Ror1 and Ror2
were identified as 10 BMMSC-specific RTK genes. RTK
transcripts for Insr (insulin receptor), Flt1 (FMS-like
tyrosine kinase 1) and Kdr (kinase insert domain protein
receptor) were generally equally expressed in HSPCs and
BMMSCs, whereas transcripts for five RTK genes (Epha6,
Epha8, Musk, Ros1 and Ntrk2) were not detectable in
either HSPCs or BMMSCs.

Expression profile of cytoplasmic non-tyrosine kinase
genes
Out of 32 murine non-RTK genes, we included 23 genes
in our present study (Table 1). Among the non-RTK genes
evaluated, 10 genes (Btk, Tec, Hck, Lck, Lyn, Jak2, Jak3,



Figure 2 Immunophenotypic characterization of bone marrow mesenchymal stromal cells by flow cytometry (fluorescence-activated
cell sorting). Fluorescence-activated cell sorting analysis of cell surface markers illustrating that bone marrow-derived mesenchymal stromal cells
(BMMSCs) express known stromal–mesenchymal markers such as CD44, CD73, CD90, CD105, and MHC class I and are negative for the
hematopoietic cell lineage markers including CD45, CD11b, CD14, CD34, MHC class II and CD31. Unfilled curve, cells stained with isotype control
antibody; filled gray curve, staining against each specific cell surface marker.
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Matk, Fes, and Syk) were upregulated by twofold to 972-
fold in HSPCs in comparison with BMMSCs and five
non-RTK genes (Abl1, Fert2, Fyn, Ptk2, and Tnk2) were
overexpressed threefold to 47-fold in BMMSCs. Moreover,
four non-RTK genes (Bmx, Txk, Fgr and Zap70) were
found to be exclusively expressed in HSPCs. Fyn was only
detectable in BMMSCs, while Jak1was similarly expressed
in HSPCs and BMMSCs. Transcripts for the non-RTK
genes Tnk1 and Srms were not detectable in either HSPCs
or BMMSCs.

Expression profile of G-protein coupled receptor genes
G-protein coupled receptors comprise a large protein
family of transmembrane receptors that transduce extra-
cellular stimuli into intracellular signals through their
interaction with heterotrimeric G proteins [30]. All 19
distinct mammalian chemokine receptors are the members
of the large protein family G-protein coupled receptors
[31]. We analyzed 10 G-protein coupled receptor transcripts,
including eight chemokine receptors (Ccr1, Ccr3, Ccr4,
Ccr7, Ccr8, Cxcr3, Cxcr5 and Cxcr7), in our custom-
designed gene expression array profile (Table 1). Ccr1 was
expressed 96-fold more in HSPCs than in BMMSCs, and
gene transcripts for Ccr8 and Cmkor1 (Cxcr7) were
upregulated fourfold and 293-fold respectively in BMMSCs
when compared with HSPCs. Expression of Ccr4, Ccr7,
Cxcr3 and Blr1 (Cxcr5) were limited to HSPCs, while
transcript expression for Ccr3, Agtrl1 (angiotensin receptor-
like 1) and Ednrb (endothelin receptor type B) were
similarly expressed in both HSPCs and BMMSCs.

Expression profile of cytokine receptor genes
Cytokine receptors are transmembrane receptors expressed
on the surface of a wide range of cells that recognize
and respond to cytokines; however, cytokine receptors
lack intrinsic protein tyrosine activity found in many
other receptors [32]. Signaling through cytokine receptors
depends upon their interaction with Janus kinases, which
couple ligand binding to tyrosine phosphorylation of
signaling recruited to the receptor complex [33]. Fifteen
members of the type-1 cytokine receptor family (CRF1)
mostly comprising the hematopoietin cytokine receptors
(Il3ra, Il6ra, Il7r, Csf2ra, Csf2rb, Csf3r, Epor, Osmr, Lifr,
Mpl, Ngfr, Tnfrsf1a, Acvr1, Acvrl1 and Bmpr1a) were
included in our differential gene expression assessment.
Out of these 15 cytokine receptor genes, Il6ra, Il7r,
Csf2ra and Epor were upregulated in HSPCs by four-
fold, 156-fold, 25-fold and 12-fold respectively when
compared with transcript expression levels in BMMSCs
(Table 1). Acvr1, Acvrl1, Bmpr1a and Lifr were



Figure 3 In vitro osteogenic, adipogenic and chondrogenic differentiation of bone marrow mesenchymal stromal cells. Bone marrow-
derived mesenchymal stromal cells (BMMSCs; passage 2 to 3) were cultured in vitro under osteogenic, adipogenic and chondrogenic induction
condition for 3 weeks. Alizarin Red staining shows mineralization deposition, Oil Red O staining demonstrates the generation of lipid-containing
adipocytes and Alcian blue staining demonstrates cartilage matrix (magnification 400). Data shown are representative of six independent experiments.
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overexpressed by 22-fold, 3-fold, 6-fold and 2-fold more in
MSCs. Csf2rb, Csf3r and Mpl were exclusively expressed
in HSPCs. Ngfr and Osmr expression was restricted to
MSCs, and IL3ra and Tnfrsf1a were similarly expressed in
both HSPCs and BMMSCs.

Expression profile of transcripts for other cell signaling
molecules
A few other cell signaling targets genes were evaluated
and were differentially expressed in HSPC and BMMSC
populations (Table 1). Transcript expression of the leukocyte
common antigen (PTPRC/CD45) was restricted to HSPCs.
Genes transcripts for Mrc1 (mannose receptor, C type 1)
and Lgals9 (lectin, galactose binding, soluble 9) were
overexpressed in HSPCs by 2.5-fold and 19-fold respect-
ively in comparison with the transcript levels in BMMSCs
(Table 1), while Gas6 (growth arrest specific 6), Sca1 (spi-
nocerebellar ataxia 1), and Spp1 (secreted phosphoprotein-1)
expression levels were significantly higher, 381-fold, 3-fold,
and 425-fold respectively, in BMMSCs. Furthermore,
Gata4 (GATA binding protein 4), a transcription factor,
was exclusively expressed in BMMSCs, whereas the ex-
pression levels of the transcription factor Hoxb4 (homeo-
box B4) and Abcb1b (ATP-binding cassette, sub-family B
(MDR/TAP), member 1B) were similar in both HSPCs
and BMMSCs.

Flow cytometry validation of RT-PCR array data
To validate the results obtained by qRT-PCR microarray
analysis, we selected six target genes that are differen-
tially expressed, and assessed their comparative expres-
sion corresponding cell surface protein levels using flow
cytometric analysis (Figure 4). Our mRNA transcript
results demonstrate the receptors for collagen (Ddr2)
and platelet-derived growth factor (Pdgfra) were exclu-
sively expressed only on BMMSCs that lack c-kit and
CD45 expression (Figure 2), whereas both populations
of cells expressed transcripts and cell surface protein for
Sca-1 and KDR (Flk-1/Vegfr2).
Discussion
Bone marrow HSPCs and BMMSCs share a common
microenvironmental niche wherein intercellular and intra-
cellular network signaling communications direct stem
cell fate activation, proliferation, development, and tissue
differentiation [34,35]. Limited comparative information is
available on the molecular signaling behavior of undiffer-
entiated BMMSCs and HSPCs. Defining the signaling
mechanisms expressed in adult undifferentiated stem cells is
an essential step toward understanding the developmental
and regenerative capabilities. Here we report a compre-
hensive evaluation, of mRNA gene transcripts for 94
signaling molecules, in which 11 transcripts were equally
expressed in both HSPCs and BMMSCs, 19 overexpressed
in HSPCs compared with BMMSCs, 27 overexpressed
BMMSCs compared with HSPCs, 16 expressed only in
HSPCs, 14 expressed only in BMMSCs and seven
expressed in neither cell population. To our knowledge,
this is the first study to report simultaneous determination
of multiple cell signaling molecules in highly purified
undifferentiated stem cell populations under standardized
conditions. Flow cytometric analysis showed that the
transcriptional levels of CD45, c-kit, Sca-1, KDR (Flk-1/
Vegfr2), Pdgfra, and Ddr2 were consistent with the cell
surface translational levels of protein expression.
Of the 90 PTKs, 58 are categorized as RTKs and 32

as cytoplasmic non-RTKs [14]. Of the 37 RTK gene
transcripts we evaluated, 23 gene transcripts were either ex-
clusively confined to or more highly expressed in BMMSCs.
Transcripts for Aatk, and Csfr1were more highly expressed
in HSPCs than in BMMSCs, while transcripts Flt3, Kit,
Tek, and Tie1were found to be exclusively expressed in
HSPCs, all known receptors for ligands that have been
shown to be important in primitive HSPC survival, qui-
escence, activation, proliferation, mobilization and/or
differentiation [36-41]. In contrast, we found in BMMSCs
a different set of transcripts for genes encoding signaling
receptors linked to stem cell survival and growth (Axl,
Pdgfr and Egfr), self-renewal (Egfr and Ephr), maintenance



Table 1 Differential gene expression between bone marrow-derived hematopoietic stem/progenitor cells and bone
marrow-derived mesenchymal stromal cells

Gene identification Assay on
demanda

ΔCt
HSPCb

ΔCt
BMMSCb

Fold-change
HSPC/BMMSCc

P value

RTK gene transcripts

Aatk-apoptosis-associated tyrosine kinase Mm00545697_m1 16.8 ± 0.57 17.91 ± 0.30 2.5 0.009

Axl-AXL receptor tyrosine kinase Mm00437221_m1 21.03 ± 0.41 11.49 ± 0.32 −818.7 0.0001

Mertk-c-mer proto-oncogene tyrosine kinase Mm00434920_m1 23.04 ± 0.76 18.68 ± 0.41 −21.7 0.0001

Tyro3-TYRO3 protein tyrosine kinase 3 Mm00444547_m1 21.49 ± 0.62 15.83 ± 0.38 −52 0.0001

Ddr1-discoidin domain receptor family, member 1 Mm00432251_m1 ND 21.20 ± 0.49

Ddr2-discoidin domain receptor family, member 2 Mm00445615_m1 ND 11.46 ± 1.94

Egfr-epidermal growth factor receptor Mm00433023_m1 23.44 ± 0.64 16.89 ± 0.48 −88.8 0.0001

Epha1-Eph receptor A1 Mm00445804_m1 23.88 ± 0.83 20.73 ± 0.42 −9.2 0.0001

Epha2-Eph receptor A2 Mm00438726_m1 19.20 ± 0.96 17.34 ± 0.46 −3.8 0.0001

Epha3-Eph receptor A3 Mm00580743_m1 ND 22.18 ± 0.33

Epha4-Eph receptor A4 Mm00433056_m1 22.17 ± 0.49 20.76 ± 0.41 −2.8 0.0001

Epha6-Eph receptor A6 Mm00433094_m1 ND ND

Epha7-Eph receptor A7 Mm00833876_m1 22.06 ± 1.10 17.57 ± 0.29 −22.9 0.0001

Epha8-Eph receptor A8 Mm00433106_m1 ND ND

Ephb3-Eph receptor B3 Mm00802553_m1 ND 16.69 ± 0.79

Ephb4-Eph receptor B4 Mm00438750_m1 22.21 ± 0.46 15.50 ± 0.33 −107.3 0.0001

Fgfr1-fibroblast growth factor receptor 1 Mm00438923_m1 20.91 ± 1.27 15.95 ± 0.20 −36.5 0.0001

Fgfr2-fibroblast growth factor receptor 2 Mm00438941_m1 ND 20.55 ± 0.40

Fgfr3-fibroblast growth factor receptor 3 Mm00433294_m1 ND 20.32 ± 0.48

Insr-insulin receptor Mm00439693_m1 15.97 ± 0.43 15.82 ± 0.29 −1.1 0.3273

Met-met proto-oncogene Mm00434924_m1 18.25 ± 0.38 14.36 ± 0.49 −15.9 0.0001

Mst1r-macrophage stimulating 1 receptor (c-met-related tyrosine kinase) Mm00436365_m1 ND 24.49 ± 1.08

Musk-muscle, skeletal, receptor tyrosine kinase Mm00448006_m1 ND ND

Csf1r-colony stimulating factor 1 receptor Mm00432689_m1 14.89 ± 0.43 22.45 ± 0.43 197.3 0.0001

Flt3-FMS-like tyrosine kinase 3 Mm00438996_m1 17.68 ± 0.87 ND

Kit-kit oncogene Mm00445212_m1 15.21 ± 0.63 ND

Pdgfra-platelet derived growth factor receptor, alpha polypeptide Mm00440701_m1 ND 16.71 ± 0.66

Pdgfrb-platelet derived growth factor receptor, beta polypeptide Mm00435546_m1 19.98 ± 0.60 13.83 ± 0.24 −72.4 0.0001

Ret-ret proto-oncogene Mm00436304_m1 22.27 ± 0.64 20.56 ± 0.41 −3.4 0.0001

Ror1-receptor tyrosine kinase-like orphan receptor 1 Mm00443462_m1 ND 18.75 ± 0.37

Ror2-receptor tyrosine kinase-like orphan receptor 2 Mm00443470_m1 ND 19.22 ± 0.30

Ros1-Ros1 proto-oncogene Mm00803362_m1 ND ND

Tek-endothelial-specific receptor tyrosine kinase Mm00443242_m1 18.52 ± 1.21 ND

Tie1-tyrosine kinase receptor 1 Mm00441786_m1 20.39 ± 0.84 ND

Ntrk2-neurotrophic tyrosine kinase, receptor, type 2 Mm00435422_m1 ND ND

Flt1-FMS-like tyrosine kinase 1 Mm00438980_m1 21.13 ± 0.41 20.52 ± 0.49 −1.6 0.0032

Kdr-kinase insert domain protein receptor Mm00440099_m1 23.48 ± 0.60 23.31 ± 0.70 −1.3 0.5296

Non-RTK transcripts

Abl1-v-abl Abelson murine leukemia oncogene 1 Mm00802038_g1 16.54 ± 0.54 14.93 ± 0.14 −3 0.0001

Tnk1-tyrosine kinase, non-receptor, 1 Mm00840782_g1 ND ND

Tnk2-tyrosine kinase, non-receptor, 2 Mm00450301_m1 17.25 ± 0.34 15.88 ± 0.25 −2.6 0.0001

Matk-megakaryocyte-associated tyrosine kinase Mm00440268_m1 17.49 ± 0.83 22.68 ± 0.58 41.9 0.0001
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Table 1 Differential gene expression between bone marrow-derived hematopoietic stem/progenitor cells and bone
marrow-derived mesenchymal stromal cells (Continued)

Ptk2-PTK2 protein tyrosine kinase 2 Mm00433209_m1 20.21 ± 0.90 14.67 ± 0.28 −47.1 0.0001

Fert2-fer (fms/fps related) protein kinase, testis specific 2 Mm00484303_m1 17.74 ± 0.48 15.11 ± 0.22 −6.3 0.0001

Fes-feline sarcoma oncogene Mm00802572_g1 13.51 ± 0.47 17.67 ± 0.45 18.8 0.0001

Frk-fyn-related kinase Mm00456656_m1 ND 18.56 ± 0.54

Srmssrc-related kinase lacking C-terminal regulatory tyrosine Mm00441546_m1 ND ND

Jak1-Janus kinase 1 Mm00600614_m1 13.23 ± 0.54 12.47 ± 0.43 −1.8 0.0009

Jak2-Janus kinase 2 Mm00434561_m1 14.69 ± 0.63 15.81 ± 0.25 2.4 0.0001

Jak3-Janus kinase 3 Mm00439962_m1 16.78 ± 0.62 17.93 ± 0.20 2.4 0.0001

Fgr-Gardner-Rasheed feline sarcoma viral (Fgr) oncogene homolog Mm00438949_m1 14.67 ± 1.61 ND

Fyn-Fyn proto-oncogene Mm00433373_m1 17.01 ± 0.54 14.57 ± 0.40 −5.6 0.0001

Hck-hemopoietic cell kinase Mm00439302_m1 14.2 ± 0.76 22.11 ± 0.54 275.1 0.0001

Lck-lymphocyte protein tyrosine kinase Mm00802897_m1 19.42 ± 0.49 23.04 ± 0.43 13 0.0001

Lyn-Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Mm00802933_m1 13.28 ± 0.87 19.56 ± 0.51 93.1 0.0001

Bmx-BMX non-receptor tyrosine kinase Mm00515368_m1 14.73 ± 1.07 ND

Btk-Bruton agammaglobulinemia tyrosine kinase Mm00442712_m1 15.05 ± 1.20 24.92 ± 0.76 972.4 0.0001

Tec-cytoplasmic tyrosine kinase, Dscr28C related (Drosophila) Mm00443230_m1 16.2 ± 0.34 18.24 ± 0.33 4.2 0.0001

Txk-TXK tyrosine kinase Mm00443280_m1 20.98 ± 0.50 ND

Syk-spleen tyrosine kinase Mm00441649_m1 12.74 ± 0.57 17.10 ± 0.21 22.1 0.0001

Zap70-zeta-chain (TCR) associated protein kinase Mm00494255_m1 19.49 ± 1.30 ND

G-protein coupled receptor transcripts

Agtrl1-angiotensin receptor-like 1 Mm00442191_s1 19.96 ± 0.56 20.22 ± 0.88 1.3 0.3972

Ednrb-endothelin receptor type B Mm00432989_m1 22.96 ± 1.06 22.70 ± 0.67 −1 0.4802

Ccr1-chemokine (C-C motif) receptor 1 Mm00438260_s1 13.33 ± 0.63 19.78 ± 1.13 95.6 0.0001

Ccr3-chemokine (C-C motif) receptor 3 Mm00515543_s1 19.93 ± 0.36 20.03 ± 1.10 1.1 0.7675

Ccr4-chemokine (C-C motif) receptor 4 Mm00438271_m1 23.9 ± 1.24 ND

Ccr7-chemokine (C-C motif) receptor 7 Mm00432608_m1 18.32 ± 1.50 ND

Ccr8-chemokine (C-C motif) receptor 8 Mm00843415_s1 21.55 ± 0.44 19.71 ± 0.83 −4.1 0.0001

Cxcr3-chemokine (C-X-C motif) receptor 3 Mm00438259_m1 20.74 ± 0.36 ND

Blr1 (Cxcr5)-Burkitt lymphoma receptor 1 Mm00432086_m1 20.88 ± 1.00 ND

Cmkor1 (Cxcr7)-chemokine orphan receptor 1 Mm00432610_m1 23.68 ± 1.01 15.52 ± 0.35 −293.2 0.0001

Cytokine receptor transcripts

Acvr1-activin A receptor, type 1 Mm00431645_m1 17.98 ± 0.83 13.57 ± 0.45 −22.2 0.0001

Acvrl1-activin A receptor, type II-like 1 Mm00437432_m1 20.73 ± 0.60 19.32 ± 0.67 −2.9 0.0001

Bmpr1a-bone morphogenetic protein receptor, type 1A Mm00477650_m1 17.28 ± 0.95 14.75 ± 0.22 −5.9 0.0001

Il3ra-interleukin 3 receptor, alpha chain Mm00434273_m1 18.52 ± 0.53 18.40 ± 0.44 −1.1 0.5524

Il6ra-interleukin 6 receptor, alpha Mm00439653_m1 14.54 ± 0.38 16.40 ± 0.51 3.8 0.0001

Il7r-interleukin 7 receptor Mm00434295_m1 17.11 ± 0.24 24.38 ± 0.75 155.9 0.0001

Csf2ra-colony stimulating factor 2 receptor, alpha Mm00438331_g1 14.46 ± 0.40 19.04 ± 0.22 24.9 0.0001

Csf2rb2-colony stimulating factor 2 receptor, beta 2 Mm00655763_m1 17.33 ± 0.38 ND

Csf3r-colony stimulating factor 3 receptor Mm00432735_m1 11.85 ± 1.43 ND

Epor-erythropoietin receptor Mm00833882_m1 19.42 ± 1.07 22.59 ± 0.85 11.6 0.0001

Lifr-leukemia inhibitory factor receptor Mm00442940_m1 17.89 ± 0.64 16.76 ± 0.36 −2.3 0.0001

Mpl-myeloproliferative leukemia virus oncogene Mm00440310_m1 14.86 ± 1.69 ND

Ngfr-nerve growth factor receptor (TNFR superfamily, member 16) Mm00446294_m1 ND 11.96 ± 0.30
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Table 1 Differential gene expression between bone marrow-derived hematopoietic stem/progenitor cells and bone
marrow-derived mesenchymal stromal cells (Continued)

Osmr-oncostatin M receptor Mm00495424_m1 ND 15.97 ± 0.24

Tnfrsf1a-tumor necrosis factor receptor superfamily, member 1a Mm00441875_m1 13.49 ± 0.36 13.91 ± 0.24 1.4 0.0023

Other signaling molecule transcripts

Abcb1b-ATP-binding cassette, sub-family B (MDR/TAP), member1B Mm00440736_m1 18.64 ± 0.64 17.73 ± 0.38 −1.9 0.0003

Mrc1-mannose receptor, C type 1 Mm00485148_m1 20.76 ± 0.47 22.00 ± 0.62 2.5 0.0001

Gata4-GATA binding protein 4 Mm00484689_m1 ND 20.10 ± 0.31

Hoxb4-homeo box B4 Mm00657964_m1 17.88 ± 0.50 17.28 ± 0.59 −1.7 0.0134

Ptprc-protein tyrosine phosphatase, receptor type, C Mm00448463_m1 ND ND

Gas6-growth arrest specific 6 Mm00490378_m1 23.45 ± 1.02 14.90 ± 0.26 −381.1 0.0001

Lgals9-lectin, galactose binding, soluble 9 Mm00495295_m1 13.67 ± 0.82 17.69 ± 0.25 18.9 0.0001

Sca1-spinocerebellar ataxia 1 homolog (human) Mm00485928_m1 17.08 ± 0.23 15.71 ± 0.29 −2.6 0.0001

Spp1-secreted phosphoprotein 1 Mm00436767_m1 17.91 ± 0.33 9.23 ± 0.44 −424.9 0.0001

Gene differential expression was considered significant with P <0.05. Mean ± standard deviation of six independent HSPC and BMMSC preparations are shown.
BMMSC, bone marrow-derived mesenchymal stromal cell; Ct, cycle threshold; HPSC, hematopoietic stem/progenitor cell; ND, not detectable; RTK, receptor tyrosine
kinase. aQuantitative PCR was performed on an ABI PRISM 7900HT Sequence Detection System using a custom-made TaqMan® Low Density Array. mRNA
transcripts were evaluated with TaqMan® Probes commercially available as Assay on Demand (Applied Biosystems, Foster City, CA, USA) with optimized primer
and probe concentrations.
bMean ± standard deviation mRNA level of each gene in each cell population (six individual cell samples run in duplicate) were first normalized to the expression
of 18S RNA in that sample.
cMean fold-changes in gene transcript expression levels between HSPCs and BMMSCs were evaluated with 2–ΔΔCt.
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of stem cells in the dedifferentiate state (Egfr, Fgfr), and
recruitment of cells to injured tissue (Met, Mstl1R, and
Pdgfr) [42-47]. Furthermore signaling molecules that
modulate osteogenesis/chondrogenesis (Ror1, Ror2, Ddr1,
and Ddr2) and neuronal cell development (Ret) were ei-
ther exclusively or differentially expressed in BMMSCs.
We show transcription of Gas6, a secreted vitamin-K-
dependent protein ligand for Axl, Mertk, and Tyro3
known to play a role in reversible cell growth arrest, sur-
vival, proliferation, cell adhesion, long-term hematopoiesis,
and erythropoiesis [48-50], is ubiquitously expressed in
HSPCs and BMMSCs, although transcript expression was
381-fold greater in BMMSCs.
Non-RTKs are integral components of the signaling

cascades triggered by RTKs and by other cell surface
receptors such as G protein-coupled receptors and growth
factor/cytokine receptors of the immune system [51]. Not
surprisingly, transcripts for Csf1r, Csf2ra, Csf2rb2, Csf3r,
IL6ra, IL7r, Epor, Mpl, flt3, Kit, Tie-1 and Tek receptors
for the corresponding cytokine ligands M-CSF, GM-CSF,
G-CSF, IL-6, IL-7, EPO, TPO, FLT3L, SCF, and
angiopoietin-1 were found to be HSPC specific, whereas
receptors of leukemia inhibitor factor (Lifr), nerve growth
factor (Ngfr) and oncostatin-M (Osmr, stimulates BMMSCs
to produce stromal-derived growth factor) were mainly
expressed in BMMSCs. As hematopoietic supportive cells,
BMMSCs constitutively expressed transcripts for M-CSF,
IL-6, IL-11, LIF, SCF and Flt3 ligand, and inflammatory
cytokine stimulation of BMMSCs with IL-1α induces
G-CSF, and GM-CSF expression [52]. These findings
highlight the importance of BMMSCs in the context of the
HSPC niche where they support HSPC survival (anti-apop-
totic action) and quiescence [53]. Furthermore, we found
that the expression of G-protein chemokine receptors for
the cell trafficking molecules MIP-1, RANTES, TARC, and
MCP-1 (Cccr4), MIP-3β (Ccr7) and IP-10, I-TAC and Mig
(Cxcr3) was exclusive in HSPCs. These data suggest and
are consistent with the notion that quiescent HSPCs are
poised for mobilization.
Consistent with the RTK and non-RTK findings, HSPCs

were notably enriched in Tec kinases (Tec, Btk, Bmx, and
Txk), SRC kinases (Fgr and Lck), SFK kinases (Hck), Syk
Kinases (Syk and Zap-70), Janus kinase/STAT kinases
(Jak2 and Jak3) and c-fes kinases (Fes). These intracellular
regulated transcripts are known to be important in early
HSPC decisions, and may play a key role in HSPC self-
renewal, quiescence and lineage-specific differentiation.
In contrast, BMMSCs expressed higher transcript levels of
Abl1, Fert2, Fyn Ptk2, Tnk2, and Frk, which have been
shown in other cell types to have cytoplasmic and/or nu-
clear regulatory functions in during cell differentiation, cell
remodeling, cell division, cell adhesion and cell migration
[54-59]; however, their roles in BMMSCs are unknown
and further evaluation is needed.
Our findings in this report are subject to several limi-

tations. First, we compared cell signaling receptors of
cultured early passaged BMMSCs to freshly isolated
HSPCs. It is possible that some of the differential ex-
pression in these genes is solely due to the fact that
BMMSCs were cultured whereas the HSPCs were not.
This may account for an over-representation of RTKs in
BMMSCs compared with HSPCs. Second, it is accepted



Figure 4 Cell surface protein expression on undifferentiated hematopoietic stem/progenitor cells and bone marrow-derived
mesenchymal stromal cells. Cell surface expression of CD45, cKit, Sca-1, Kdr (Flk1/Vegfr2), Ddr2 and Pdgfra on undifferentiated Lin–c-Kit+Sca-1+ cells
(hematopoietic stem/progenitor cells (HSPCs)) and bone marrow-derived mesenchymal stromal cell (BMMSCs; passage 2) via flow cytometric analysis.
Unfilled curve, cells stained with isotype control antibody; filled gray curve, staining against each specific protein.

Anam and Davis Stem Cell Research & Therapy 2013, 4:112 Page 11 of 13
http://stemcellres.com/content/4/5/112
that in vivo conditions are different from the in vitro
experimental culture conditions wherein most of the
niche microenvironmental conditions are absent. Third,
gene expression is under regulatory control at many
different stages, and therefore it is difficult to equate
mRNA levels with gene expression levels. Fourth, future
studies are needed to determine the signaling profiles
during times of stress, injury, inflammation or repair.
Lastly, the gene expression data generated and the conclu-
sions need to be verified in situ in localized cells at specific
anatomic sites using immunochemistry and laser capture
microdissection or other techniques [60].
Conclusion
In this study, we conducted a comparative analysis of
gene transcripts for a number of cell signaling receptors
in highly purified undifferentiated HSPCs and BMMSCs.
Clearly the expression of a number of these genes overlaps
between HSPCs and BMMSCs, but comparative analysis
of the gene profiles showed that there are a substantial
number of gene transcripts that are distinct or more highly
expressed in specific stem cell populations. Evaluating and
characterizing the role of these genes in regulating stem
behavior in terms of cell quiescence, proliferative capacity,
mobility and differentiation potential will be critical to
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better understanding the developmental and regenerative
capabilities of HSPCs and BMMSCs and their potential
application in cell-based therapies. A network analysis
of RTKs differentially expressed by BMMSCs and of
non-RTKs differentially expressed by HSPCs could yield
insights into the mechanisms for phosphoprotein networks
used by these cells. This information could be potentially
valuable for designing media for the efficient expansion of
these cells or understanding mechanisms that BMMSCs
use to regulate HSPC growth and survival.
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