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Abstract

trophoblastic cells.

analysis.

Introduction: Tissue factor (TF) is expressed in various types of cells. TF expression is essential for many biological
processes, such as blood coagulation and embryonic development, while its high expression in stem cells often
leads to failure of transplantation. In this study, we used the human embryonic stem cell (hESC) culture system to
understand the molecular mechanisms by which TF expression is regulated in hESC-derived hematopoietic and

Methods: hESCs were induced in vitro to differentiate into hematopoietic and trophoblastic cells. TF expression in
various types of cells during these differentiation processes was examined by quantitative real-time polymerase
chain reaction analysis and western blot analysis. The regulatory mechanisms of TF expression were investigated by
miRNA expression analysis, luciferase report assay, TF mRNA and protein analysis, and pathway phosphorylation

Results: We first found that TF was expressed only in trophoblasts and granulocyte-monocyte (G-M) cells
differentiated from hESCs; and then demonstrated that miR-20b downregulated and Erk1/2 signaling pathway

upregulated the TF expression in trophoblasts and G-M cells. Finally, we found that miR-20b downregulated the TF
expression independently of the Erk1/2 signaling pathway.

Conclusions: The miR-20b and Erk1/2 pathway independently regulate expression of TF in trophoblasts and G-M
cells differentiated from hESCs. These findings will open an avenue to further illustrate the functions of TF in various

biological processes.

Introduction

Tissue factor (TF) is a 47 kDa glycoprotein integrated in
the membrane of cells [1]. As a receptor for factor II/Flla,
TF plays a pivotal role in extrinsic blood coagulation.
Recently, emerging evidence has indicated its roles in
tumor angiogenesis [2], inflammation, atherosclerosis
[3,4], embryonic development [5], and homeostasis [6].
Much evidence has suggested that TF exerts pleiotropic
roles in multiple biological processes via its varied
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expression in various types of cells. TF is widely
expressed in many types of tissues with relatively high
expression in the central nervous system, lungs, and
placenta [7]. TF is also expressed in mature blood cells;
however, its expression levels in blood cells are variable. For
example, TF is highly expressed in granulocyte—monocyte
(G-M) cells and macrophages [8,9], while its expression is
rarely detectable in erythrocytes.

Varied TF expressions correspond to the functions of
TF in some types of cells [10]. For example, in G-M cells,
an essential component of the innate immune system, the
expression of TF is increased when inflammation occurs.
This observation reflects its role in blood coagulation and
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inflammation because inflammation activates the blood
coagulation system and blood clotting activity in turn
aggravates inflammatory reaction [11]. In this process,
TF — a receptor molecule in G-M cells — activates the
coagulation pathway and regulates inflammation reaction.

High expression of TF in granulocytes may cause graft-
versus-host disease, a common complication that occurs in
allogeneic cell and tissue transplantation. Graft-versus-host
disease is characterized by immune complex formation,
vascular rejection, activation of inflammation, vascular
endothelial injury, and organ necrosis [12]. Increased TF
expression in granulocytes provokes an immune response
and then confers host body damage [13].

TF expression in the cells of the placenta is required for
maintaining the stability of embryos [14]. The placenta is
a highly vascularized organ with fetal and maternal blood
supply. In the placenta, TF is only highly expressed in tro-
phoblasts [15] that are essential for embryo implantation
in and interaction with the decidualized maternal uterus
[16]. This hemostatic balance may be critical for normal
placental function and pregnancy outcome [17,18].

Although the expression of TF has been demonstrated
in various biological processes, the molecular mechanisms
regulating TF expression remains largely unknown. In
recent years, microRNAs (miRNAs) have been found to
participate in embryonic development by regulating gene
expression [19]. miRNAs are small RNA molecules about
17 to 23 nucleotides in length. Usually, the miRNA binds
to the miRNA-RNA-induced silencing complex in the
cytoplasm, and this complex further binds to the 3'-un-
translated region (UTR) of target transcripts and blocks
protein translation or destabilizes mRNAs [20]. DNA
analysis shows that there are miRNA-binding sites for
miR-19a, miR-20b, and miR-106a in the 3'-UTR of the TF
mRNA transcript. In human breast cancer cells, TF ex-
pression can be downregulated by miR-19 [21], suggesting
that TF expression can be regulated by miRNA. Here, we
hypothesized that the expression of TF in hematopoietic
and trophoblastic cells differentiated from hESCs are
regulated by miRNAs.

TF expression is also regulated by signaling pathways. In
colorectal carcinoma cells, the activation of ras oncogene
and inactivation of p53 leads to high expression levels of
TF via the Mek1/2 and phosphatidylinositol 3-kinase
pathway [22]. In lipoolysaccharide-stimulated human
monocytic cells, the Erk1/2 specific inhibitor U0126
suppresses the TF promoter activity [23]. Furthermore, the
Akt and Erk1/2 pathways have been shown to be involved
in cellular development and cell proliferation [24]. In this
study, we also asked whether Akt or Erk1/2 participates in
regulating TF expression.

Human embryonic stem cells (hESCs) can be successfully
expanded and induced to differentiate into all stages of
hematopoietic cells and trophoblasts in vitro. In this study,
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we used this system to address the following questions:
is TF expressed in various types of cells during these dif-
ferentiation processes? Are miRNAs, the Erk1/2 signaling
pathway or the Akt signaling pathway involved in the
regulation of TF expression?

Materials and methods

Cell cultures and differentiation

The hESC lines H9 and CT2 were maintained in the
presence of 4 ng/ml basic fibroblast growth factor (R&D
Systems, Minneapolis, MN, USA) as described previously
[25]. Trophoblastic differentiation of hESCs was carried
out in medium with 100 ng/ml BMP-4 (R&D Systems)
for up to 5 to 7 days as described elsewhere [26]. Hema-
topoietic differentiation of hESCs was carried out as de-
scribed previously [27]. Briefly, hESCs were transferred
onto OP9 feeders and cultured in a-mimimum essen-
tial medium (MEM) supplemented with 10% fetal bo-
vine serum, 2 mM L-glutamine, 10% Nonessential
Amino Acids (NEAA), and 1-thioglycerol for 7 days to
allow hESCs to differentiate into hematopoietic stem/
progenitor cells (HSPCs) (CD34°CD387). On day 8, HSPCs
were selected by magnetic activated cell sorting and further
differentiated into either G-M cells (CD14*CD34~ or
CD15%CD34") by culturing them in the medium supple-
mented with G-CSF (100 ng/ml; R&D Systems) for 7 days
or into erythrocytes (CD235") in medium supplemented
with EPO (100 ng/ml; R&D Systems) for 14 days. The
G-M cells were maintained in Dulbecco’s modified
Eagle’s medium—F12 with 10% fetal bovine serum and
interleukin-3 (50 ng/ml; R&D Systems). Erythrocytes
were maintained in Dulbecco’s modified Eagle’s medium—
F12 with 30% fetal bovine serum and IL-3 (50 ng/ml;
R&D Systems). The Ethics Committee of Xiangya Hospital
of Centre South University approved the study.

Florescence-activated flow cytometry

Surface markers of cells were analyzed using florescence-
activated flow cytometry (FACS). Cells were stained with
various combinations of monoclonal antibodies conjugated
with fluorochromes. Antibodies, CD14-phycoerythrin (PE),
CD15-allophycocyanin (a surface marker for G-M cells),
CD34-PE (a surface marker for HSPCs), CD235a-PE
(a surface marker for erythrocytes), and CD142-fluorescein
isothiocyanate (TF) were purchased from BD Biosciences
(BD, San Jose, CA, USA). Stained cells were analyzed
using a FACS Calibur flow cytometer (BD Biosciences)
and the data were analyzed with FlowJo software
(Milteneyi Biotech, Auburn, CA, USA).

Magnetic activated cell sorting

To isolate CD34"CD387, CD14"CD34", or CD15"CD34~
hematopoietic cells from cultured cells, we used a MACS
Pro Separator (Milteneyi Biotech, Auburn, CA, USA). Dead
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cells in the culture were excluded by staining with 7-
aminoactinomycin staining solution (BD Biosciences)
and live cells were stained with CD14-PE, CD15-
allophycocyanin, CD34-PE, or CD235a-PE before separ-
ation. TF expression in these purified hematopoietic cell
populations was evaluated by FACS after staining cells
with CD142-fluorescein isothiocyanate antibody.

Plasmid construction

To construct the dual-luciferase vector, pmirGLO-TF-3"-
UTR bearing the luciferase reporter gene with the 3'-UTR
of TF in the promoter region, a 1,200 base pair fragment
(NM_001993, 1141 to 2,341 base pairs) was first amplified
using polymerase chain reaction (PCR) with the forward
primer 5 -ATAGAGCTCAGGAAGCACTGTTGGAGC-3’
(27 base pairs) and the reverse primer 5 -TAAGTCGAC
GCGAAAAAGATACGTTGTTG-3" (29 base pairs). The
amplified fragment was then cloned into the pmirGLO
vector (Promega, Madison, WI, USA) (Figure 1). The
pmirGLO-TF-3'-UTR mutant was constructed by cloning
the TF-3'-UTR mutant fragment, which was generated
using the site-directed mutagenesis kit (Stratagene,
La Jolla, CA, USA).

Cell transfection

The pmirGLO-TE-3'-UTR and its corresponding mutant
plasmid DNA were prepared as usual. miRNA mimics
and inhibitors for miR-19a, miR-20b, and miR-106a were
purchased from GenePharma Co. (Shanghai, China). For
transfection, G-M cells were cultured in a flask at a cell
density of 10”/ml and trophoblasts were plated in plates at
80% confluence. Twenty-four hours later, these cells were
washed twice with Dulbecco’s phosphate-buffered saline
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(DPBS, SIGMA, St. Louis, Missouri, USA) and then
transfected with 2 pg TF-3'-UTR or mutant plasmid
DNA with 100 nM inhibitors or 100 nM mimics of miR-
19a, miR-20b, or miR-106a mixed with Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. The transfection procedure
was repeated twice at 24 hours and 48 hours following the
first transfection. Randomly synthesized RNA fragments
were used as control. After 3 days, cells were washed twice
in Dulbecco’s phosphate-buffered saline, filtered through a
70 pm cell strainer (BD Biosciences), and used for further
analysis.

Luciferase assay

Luciferase activity in cells was assayed using the Luciferase
Assay Kit (Promega) according to the manufacturer’s in-
structions. Briefly, one million cells were transfected,
harvested, and lysed at 48 hours after cell transfection.
Then 20 pl cell lysate was mixed with 100 ul Luciferase
Assay Reagent. Light produced was measured using a BMG
FLUOstar Optima (BMG Labtech GmbH, Germany).

Inhibition of Erk1/2 signaling pathway

To inhibit the Erkl1/2, G-M cells or trophoblasts were
cultured in differentiation medium in the presence of 10
uM U0126 (Cell Signal Technology, Danvers, MA, USA)
for 48 hours.

Semiquantitative reverse transcription-PCR

Total RNA was extracted by Trizol reagent (Invitrogen)
and reverse transcribed to cDNA using the SuperScript®
RT Kit (Invitrogen) according to the manufacturer’s
instructions. Primers used for semiquantitative reverse

N
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Figure 1 Potential microRNA binding sites in the 3'-untranslated region of the tissue factor gene. miRNA, microRNA; TF, tissue factor; UTR,
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Table 1 Primer pairs used for reverse transcriptase
polymerase chain reaction

Gene Forward primer (5' to 3') Reverse primer (5' to 3')
symbol

Oct-4 CTTGGGCTACACAGGC CTCAATACTCGTTCGCTTTC
Nanog  TTTGGAAGCTGCTGGGGAAG GATGGGAGGAGGGGAGAGGA
CDX2  CCGAACAGGGACTTGTTTAGAG CTCTGGCTTGGATGTTACACAG
TF ACGCTCCTGCTCGGCTGGGT CGTCTGCTTCACATCCTTCA
GAPDH  GGAGCCAAAAGGGTCATC CCAGTGAGTTTCCCGTTC

transcription-PCR to measure expression of TF, CDX2,
Oct-4, and Nanog are presented in Table 1. PCR
was carried out in GeneAmp 9700 (Applied Biosystems,
Foster City, CA, USA) with the following PCR programs:
TF — 95°C for 5 minutes; 32 cycles of 94°C for 30 seconds,
50°C for 30 seconds, and 72°C for 30 seconds; and 72°C
for 10 minutes; and CDX2, Oct-4, and Nanog — 95°C for
5 minutes; 32 cycles of 94°C for 30 seconds, 62°C for
30 seconds, and 72°C for 30 seconds; and 72°C for
10 minutes.

Quantitative real-time PCR

Total RNA including small RNAs was isolated from
cultured cells using the miRNA-RT Kit (Takara,
Dalian, China) according to the manufacturer’s in-
structions. miRNAs were quantified by quantitative real-
time PCR using the SYBR mix (Takara) and the primers
presented in Table 2 according to the manufacturer’s in-
structions. PCR was carried out in 7900HT (Applied
Biosystems).

Western blotting

Total proteins in cultured cells were prepared by lysing cells
in RIPA buffer with protease inhibitors (Sigma-Aldrich).
Equal amounts of protein were separated on a 10%
SDS polyacrylamide gel and then transferred onto a
polyvinylidene fluoride membrane (Millipore, Billerica,
MA, USA). After blocking with 0.5% bovine serum albu-
min (Abcam, Cambridge, MA, USA), the polyvinylidene
fluoride membranes were incubated for 1 to 2 hours at
room temperature with TBST-diluted primary antibodies
against TF (1:200; Abcam), Erk1/2 (1:500; Cell Signal

Table 2 Primer pairs used for quantitative real-time
polymerase chain reaction

Gene  Forward primer (5’ to 3') Reverse primer (5' to 3')
symbol

PU CCTGTATGTAGCGCAAGAGATTTA  CCAGCACAAGTTCCTGATTTTATC
CDX2  AGGGGGTGGTTATTGGACTC CATTCAGCCCAGAGAAGCTC
TF GCCAGGAGAAAGGGGAAT CAGTGCAATATAGCATTTG
GAPDH  ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC
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Technology), phosphorylated Erk1/2 (1:500; Cell Signal
Technology), Akt (1:500; Cell Signal Technology), phos-
phorylated Akt (1:500; Cell Signal Technology) or f-Actin
(1:1,000; Cell Signal Technology) followed by incubation
with horseradish peroxidase-linked secondary antibody
(1:2,000; Santa Cruz Biotechnology, Inc., Santa Cruz, CA,
USA) for 1 hour at room temperature. Finally, the mem-
branes were visualized by the Che-mi Doc imaging system
(Bio-rad, Hercules, CA, USA) or Immobilon Western
Chemiluminescent HRP Substrate (Millipore).

Statistical analysis

All experiments were repeated at least three times. In each
experiment, triplicate samples were used to analyze for
each parameter described above. All values were expressed
as means * standard error of the mean. P <0.05 was
considered statistically significant. Statistical analysis was
performed using SPSS software (version 17.0; Millipore,
Billerica, MA, USA).

Results

Expression of TF in trophoblasts and hematopoietic

cells differentiated from hESCs

In vitro, H9 and CT2 hESCs were successfully induced to
differentiate to trophoblasts and HSPCs, and then G-M
cells and erythrocytes (Figure 2A). Proliferating H9 hESCs
expressed Nanog, Oct4, and a low level of CDX2
(Figure 2B,C). The expression of Oct4 and Nanog
began to decrease at differentiation day 2 and almost
disappeared at differentiation day 5 toward trophoblasts
while the expression of CDX2, a trophoblast marker gene,
increased with time (Figure 2C). These results indicated
that induced differentiation toward trophoblasts was
successful. We then asked whether TF was expressed in
trophoblasts by reverse transcriptase PCR and western
blotting. As shown in Figure 2C,E, TF was not expressed
in proliferating embryonic stem cells and cells at differen-
tiation day 2, but was expressed in cells at differentiation
day 5.

We purified HSPCs, G-M cells, and erythrocytes and
examined the expression of TF in these cells by FACS
analysis, quantitative real-time PCR, and western blotting.
Only G-M cells, including CD14" and CD15" cells,
expressed CD142 (TF) (Figure 2D,E,F). Likewise, TF
was only expressed in the trophoblasts and G-M cells, but
not in HSPCs and erythrocytes differentiated from CT2
hESCs (data not shown). Taken together, these results
suggested that TF was expressed only in G-M cells and
trophoblasts differentiated from hESCs.

miR-20b inhibited TF expression in trophoblasts,

and G-M cells differentiated from hESCs

In the 3'-UTR of TF mRNA, there are binding sites for
miR-19a, miR-20b, and miR-106a (Figure 1). We thus
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Figure 2 Tissue factor differential expression in trophoblasts and hematopoietic cells derived from human embryonic stem cells. (A)
Schematic diagram of human embryonic stem cell (hESC) differentiation into hematopoietic and trophoblastic cells. (B) Immunostaining showed
hESCs expressing Nanog. (C) Trophoblastic differentiation of H9 cells. H9 hESCs were induced in medium with BMP4 to differentiate into
trophoblasts. Expression of Oct-4, Nanog, CDX2, and tissue factor (TF) were examined using reverse-transcription polymerase chain reaction (PCR).
(D) H9 hESCs were induced to differentiate into hematopoietic cells. Florescence-activated flow cytometry (FACS) analysis showed that TF
(CD142) was expressed in CD14" and CD15% G-M cells, but not in CD34" hematopoietic stem/progenitor cells (HSPCs) and CD235" erythrocytes.
(E) TF mRNA in different types of hematopoietic cells was examined by quantitative real-time PCR. (F) TF protein in different types of
hematopoetic cells and trophoblasts was examined by western blotting. APC, allophycocyanin; bp, base pair; FITC, fluorescein isothiocyanate;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; G-M, granulocyte-macrophage; PE, phycoerythrin.

asked whether these miRNAs regulated TF expression by
examining their expression patterns in hESCs, trophoblasts,
HSPCs, and G-M cells. The expression pattern of any
miRNA corresponding to the TF expression pattern would
suggest its potential regulatory role. Surprisingly, the ex-
pressions of miR-20b and miR-106a were significantly
higher in hESCs than in HSPCs, G-M cells, and tropho-
blasts. The expression of all three miRNAs in HSPCs was
significantly lower than in G-M cells and trophoblasts
(Figure 3). These miRNA expression patterns were also
observed in the cells differentiated from CT2 hESCs (data
not shown).

We therefore asked whether miR-19a, miR-20b or
miR-106a mimics could alter TF expression in G-M cells
and trophoblasts using the TF-3"-UTR reporter assay, TF
mRNA, and TF protein analysis. In the TF-3"-UTR re-
porter assay, only miR-20b mimics significantly decreased
the reporter activity in both G-M cells and trophoblasts
(Figure 4A). The suppression of miR-20b on TF-3'-UTR
reporter was specific because miR-20b mimics could not
inhibit the reporter activity driven by mutant TF-3"-UTR
(Figure 4B). Similarly, reverse transcriptase PCR for TF
mRNA and western blotting for TF protein also showed
that TF expression in G-M cells or trophoblasts was



Yu et al. Stem Cell Research & Therapy 2013, 4:121
http://stemcellres.com/content/4/5/121

Page 6 of 9

miR-19a miR-20b miR-106a
*
* * *

201 1.5+ 1.51
E] | ] x E]
2 154 K] z
< < 1.0 =< 1.0+
z z z
% 104 [ | | -
g E £
2 £ 05 £ 054
% 05 E 3

3

& & &

0.0 0.0 0.0-

< > S v < o &
S s s & ¢ < KN s o 4 X &
\3’ ng <} v& &\é‘!’ \\%Q I ‘\$9 ,g’v *z\% <3 ic\éo
&4°Q &‘oQ &8

Figure 3 miR-19a, miR-20b, and miR-106a expression in hematopoietic cells and trophoblasts derived from human embryonic stem
cells. Total RNAs from human embryonic stem cells (hESCs), hematopoietic stem/progenitor cells (HSPCs), granulocyte-macrophage (G-M) cells,
and trophoblasts were extracted and the expression of miRNAs was analyzed by quantitative real-time polymerase chain reaction. *P <0.05.

reduced by miR-20b mimics, but not by miR-19a or
miR-106a mimics (Figure 4C).

To further confirm our observation above, we asked
whether miR-20b inhibitor could increase the TF expres-
sion in G-M cells or trophoblasts. As shown in Figure 4D,
TF mRNA was significantly increased in both trophoblasts
and G-M cells when miR-20b inhibitor was administrated,

while this administration did not affect the expression of
the lineage-specific marker PU.1 in G-M cells or CDX2 in
trophoblasts. These results were also observed in the cells
differentiated from the CT2 hESCs (data not shown).
Taken together, these data suggested that miR-20b
decreased TF expression, while it did not disturb the
trophoblastic or hematopoietic differentiation of hESCs.
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Figure 4 miR-20b inhibited tissue factor expression. (A), (B) Tissue factor (TF)-3"-untranslated region (UTR)-luciferase reporter assay. Various
miRNA mimics with either (A) wild-type or (B) mutant TF-3"-UTR-luciferase reporter gene were transfected into granulocyte-macrophage (G-M)
cells and trophoblasts, respectively. Then 48 hours post transfection, luciferase activity was measured and reported as the mean + standard error
of the percentages of the luciferase activity in cells without miRNA mimics. (C), MRNA and protein analysis in G-M cells and trophoblasts
transfected with various miRNA mimics. (D) TF, PU.1, and CDX2 mRNA levels in G-M cells and trophoblasts transfected with miR-20b inhibitor
were analyzed using quantitative real-time polymerase chain reaction and reported as the mean + standard error of the percentage of the mRNA
levels of their corresponding gene in control cells, respectively. *P <0.05. bp, base pair; NC.
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Figure 5 Erk1/2 signaling pathway involved in regulating tissue factor expression in trophoblastic and hematopoietic differentiation of
human embryonic stem cells. (A) Western blot analysis of phosphorylated Erk1/2 and Akt in various types of cells showing that Erk1/2 signaling
pathway is active in granulocyte-macrophage (G-M) cells and trophoblasts. p-Erk1/2, phosphorylated Erk1/2; t-Erk1/2, total Erk1/2; pAkt,
phosphorylated Akt; t-Akt, total Akt. (B),(C) Decreased (B) mRNA and (C) protein levels of tissue factor (TF) in G-M cells or trophoblasts treated
with Erk1/2-specific inhibitor, U0126. Cells were treated with 10 uM U0126 or dimethylsulfoxide (control) for 4-6 or 7-9 days before harvest for
quantitative real-time polymerase chain reaction for CDX2, PU.1, and TF mRNA levels. Data were reported as the mean + standard error of the
percentage of the mRNA levels of CDX2, PU.1, and TF in cells from the control group. *P <0.05. Western blotting analysis was carried out on the

days designated in (C). hESC, human embryonic stem cell; HSPC, hematopoietic stem/progenitor cell.

Erk1/2 pathway is involved in regulating TF expression

in trophoblasts and G-M cells differentiated from hESCs
TF has been reported to be a target gene of Akt and
Erk1/2 pathways in human umbilical vein endothelial
cells and breast cancer cells [28,29]. We asked whether
these pathways were involved in regulating TF expression
in the trophoblasts and hematopoietic cells differentiated
from hESCs. We first asked whether the Erk1/2 or Akt
signaling pathway was activated in hESCs, HSPCs, G-M
cells, erythrocytes, and trophoblasts by examining the levels
of phosphorylated Erk1/2 or Akt. Phosphorylated Erk1/2
was detected in trophoblasts and G-M cells, but not in
hESCs, HSPCs, and erythrocytes, while phosphorylated
Akt was detected in hESCs and trophoblasts, but not in
HSPCs, G-M cells, and erythrocytes (Figure 5A). The
Erk1/2 pathway activity thus corresponded to TF expres-
sion in G-M cells and trophoblasts.

To confirm this observation, we used U0126 to specif-
ically inhibit Erk1/2 pathway activity and asked whether
this treatment altered the expression of TF, PU.1 (G-M
cell-specific marker gene), and CDX2 (trophoblast-specific
marker gene) in G-M cells and trophoblasts. We found
that inhibiting the Erk1/2 signaling pathway significantly
reduced the levels of mRNA (Figure 5B) and protein
(Figure 5C) of TF in both G-M cells and trophoblasts.
Interestingly, inhibiting Erk1/2 pathway activity did not
alter the mRNA levels of PU.1 in G-M cells and CDX2
in trophoblasts (Figure 5B). Likewise, we also found that
inhibiting the Erk1/2 signaling pathway using U0126
significantly reduced the expression of TF in both G-M
cells and trophoblasts differentiated from CT2 hESCs
(data not shown). Taken together, these results suggested
that Erk1/2 pathway upregulated TF expression in G-M
cells and trophoblasts.

Relative mRNA level

G-M

Figure 6 Erk1/2 signaling pathway and miR-20b regulate tissue factor expression in trophoblastic and hematopoietic differentiation of
human embryonic stem cells. Granulocyte-macrophage (G-M) cells and trophoblasts were treated with both miR-20b inhibitor and Erk1/2-
specific inhibitor U0126, simultaneously for 48 hours before harvesting for quantitative real-time polymerase chain reaction to measure the mRNA
levels of PU.1, CDX2, and tissue factor (TF). Data reported as the mean + standard error of the percentage of the mRNA levels of the

corresponding gene in cells without treatment. *P <0.05, **P <0.01.
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miR-20b downregulated TF expression in G-M cells and
trophoblasts but not through the Erk1/2 pathway

Both miR-20b and the Erk1/2 signaling pathway regulated
TF expression in G-M cells and trophoblasts. miR-20b
may regulate the expression of other genes related with
Erk1/2 signaling pathway activity. We thus asked whether
miR-20b inhibited TF expression via the Erk1/2 signaling
pathway in these cells. For this purpose, we asked whether
specifically blocking Erk1/2 pathway activity using U0126
could prevent the upregulated TF mRNA levels using
miR-20b inhibitor. As shown in Figure 6, administration
of U0126 only partially reduced the upregulated mRNA
levels of TF in G-M cells and trophoblasts using miR-20b
inhibitor. Likewise, the same results were also observed in
the G-M cells and trophoblasts differentiated from CT2
hESCs (data not shown). These data suggest that miR-20b
did not regulate TF expression through the Erk1/2 signaling
pathway.

Discussion

To understand the molecular mechanisms by which TF
differential expression was regulated, we used a hESC cul-
ture system that allows us to mimic the hematopoietic
and trophoblastic developmental processes. In this system,
we demonstrated that TF was expressed only in G-M cells
and trophoblasts (Figure 2), consistent with the previous
observation that TF expression is regulated in cells to
exert its functions in various biological processes.

Because bioinformatic analysis of the 3'-UTR of the
TF transcript suggests that TF expression may be regulated
by miR-19a, miR-20b, and miR-106a, we investigated
the potential of these miRNAs to regulate TF expression
in G-M cells and trophoblasts differentiated from hESCs
and found that miR-20b mimics inhibited TF expression
in these cells, but did not disturb the differentiation
process because the expression of G-M cell-specific
marker gene PU.1 or the trophoblast-specific marker
gene CDX2 was not affected (Figure 4). Our conclusion
is based on the following results: all three miRNAs had
lower expression levels in all hematopoietic cells and
trophoblasts differentiated from hESCs than their parent
hESCs (Figure 3); only miR-20b mimics specifically de-
creased the activity of the TF-3'-UTR-driven luciferase
reporter, but not the mutant TF-3'-UTR-driven reporter
(Figure 4A,B) when they were analyzed in G-M cells or
trophoblasts; only miR-20b mimics inhibited the TF ex-
pression in G-M cells and trophoblasts (Figure 4C); and
miR-20b inhibitor increased the TF expression in G-M
cells and trophoblasts (Figure 4D). Several studies have
shown that many types of cancer cells express aberrantly
high levels of TF [22] and miR-19 regulates TF expression
in breast cancer cells [30]. We here provided evidence
showing that miR-20b may directly interact with the 3'-
UTR of TF to suppress the expression of TF. In contrast,
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HSPCs had the lowest levels of miR-20b among hESCs,
G-M cells, and trophoblasts, but did not express TF
(Figure 3). Therefore, it is very possible that TF expression
is also regulated by other mechanisms.

Our study did conclude that the Erk1/2 signaling path-
way regulated the TF expression independent of miR-20b.
First, phosphorylated Erk1/2 was detected in G-M cells
and trophoblasts, but not in hESCs and HSPCs (Figure 5A).
Second, specifically inhibiting the Erk1/2 signaling pathway
decreased TF expression in G-M cells and trophoblasts
(Figure 5B,C). Erkl/2-regulated or Akt-regulated TF
expression is also observed in endothelial and breast
cancer cells [28,31]. Inhibiting Erk1/2 pathway activity did
not block the upregulation of TF expression conveyed
by introducing miR-20b inhibitor in G-M cells and tro-
phoblasts (Figure 6).

Interestingly, our data showed that introducing miR-20b
inhibitor to increase the TF expression or inhibiting Erk1/2
pathway activity to decrease TF expression, or both, did not
disturb the hematopoietic and trophoblastic differentiation
of hESCs because either treatment to G-M cells or tro-
phoblasts did not alter the G-M cell-specific marker PU.1
and the trophoblast-specific marker CDX2 (Figure 6). This
result implicated that TF expression may not be related to
hematopoietic or trophoblastic differentiation of hESCs.

Conclusions

In summary, we successfully used the hESC culture
system to investigate the molecular mechanisms by which
TF expression in hematopoietic and trophoblastic dif-
ferentiation of hESCs is regulated. We found that miR-
20b downregulated and the Erk1/2 signaling pathway
upregulated TF expression in G-M cells and tropho-
blasts differentiated from hESCs. Both the miRNA and
the Erk1/2 pathway regulated TF expression in these cells
independently and did not affect the hematopoietic and
trophoblastic differentiation of hESCs. Our study initiates
a way to illustrate the cellular functions of differential
expression of TF.
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