
Introduction

Th ere is an urgent need for eff ective, predictive neural 

developmental toxicity screens both for drug candidates 

and for chemicals intentionally (for example, cosmetics) 

and unintentionally (for example, pesticides) coming into 

contact with the human body [1-3]. Th e European 

Union’s 2006 Registration, Evaluation, Authorization, and 

Restriction of Chemicals regulations aim to assess the 

toxicity of all chemicals sold in Europe in quantities of 

more than 1  ton per year. As of late 2009, 143,835 

chemicals were listed as meeting this threshold [4]. 

However, the United States has no database of all 

chemicals in commerce and thus actual numbers are 

unknown. In addition, of the 3,000 chemicals categorized 

as high production in the United States (that is, 

>1 million pounds per year), only 7% have been compre-

hensively evaluated for toxicity as of 1998, largely due to 

the high cost of multigeneration animal studies and the 

lack of alternative testing methods [5].

In the United States, the US Environmental Protection 

Agency’s ToxCast and v-Embryo projects, and the US 

Environmental Protection Agency/National Institutes of 

Health (NIH)/US Food and Drug Administration’s 

collaborative Tox21 project all seek to develop more 

rapid chemical and drug testing methods [6,7]. Yet it 

remains imperative to increase the representation of 

human cellular diff eren tiation models in these in vitro

screening eff orts. Under the new NIH Microphysiological 

Systems initiative, we are developing human predictive 

neural developmental screens of broad use for pharma-

ceutical and chemical industries that will complement 

previous toxicology eff orts.

Limitations of current developmental neural 

toxicity screens

Current methods of developmental neural toxicity testing 

fall into two categories with unique limitations: in vivo

testing using laboratory animals, and in vitro testing 

using cultured cells.

Laboratory animals have long been used as human 

surrogates for testing the neural toxicity of chemicals. 

Th e most widely used animal for this purpose is the rat, 

and then to lesser degrees the mouse, rabbit and dog. In 

developmental neural toxicity tests, chemical exposure 

starts early in pregnancy and ends weeks after delivery 

[8]. Th e toxic eff ects of the chemicals are then evaluated 

by standard neurological testing of the pups and by 

analysis of histological tissue sections of the pups’ neural 

tissues [8].

Although these studies can be informative, the reported 

concordance for developmental/reproductive toxicity 
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testing between diff erent animal species (typically rat and 

rabbit) is only about 60% [3], and there is no evidence 

that the concordance between either species and human 

toxicity is any better. A good example of this is the 

chemical thalidomide, which causes birth defects in 

humans but has little eff ect in rats [9]. In addition, 

because of species-specifi c diff erences, subtle cognitive 

changes and human conditions with no known counter-

parts in animal behavior (for example, autism) are 

particularly diffi  cult to model in animals [10]. Finally, the 

cost of multigeneration animal studies is considerable 

(>$1  million/study). Animal testing is projected to 

account for a stagger ing 70% of the European Union’s 

2006 Registra tion, Evaluation, Authorization, and 

Restriction of Chemicals cost of evaluating a new 

chemical, and to consume an average of 3,200 rats per 

chemical [4].

Performing chemical screens on in vitro human models 

is another method of developmental neural toxicity 

testing. Currently, however, no in vitro human models 

are in widespread use for assessing developmental neuro-

toxicity. A few studies have examined the eff ects of toxins 

on human fetal-derived neurospheres. Human central 

nervous system neurospheres of fetal origin include stem 

cells, neurons, and astrocytes that self-assemble into 

structures which recapitulate some early neural develop-

mental events [11], providing rare access to the 

developing human neural system. However, these neuro-

spheres lack microglia and vascular cells and therefore do 

not represent the entire repertoire of cell–cell inter-

actions comprising the brain. Th ey are also hard to obtain 

in large quantities, making large-scale chemical screens 

impractical. Furthermore, individual diff erences between 

donors may introduce variations between screenings, 

potentially complicating downstream data analysis.

Human embryonic stem (ES) cells and induced pluri-

potent stem (iPS) cells, which have unlimited proliferative 

potential, provide a more practical option for building in 

vitro models [12-14]. Th e effi  cient derivation of neural 

cells from human pluripotent stem cells is now possible, 

paving the way for recent reports of developmental 

neural toxicity testing on human ES cell-derived neurons 

[15-18]. However, the number of toxins examined in 

these studies has been extremely small (typically one to 

four) and the types of cells included in the screen have 

been limited [17,18]. Th e value of these model systems to 

actually predict neural toxicity in wider chemical screens 

remains to be examined.

An innovative platform for developmental neural 

toxicity screen

Under the NIH’s Microphysiological Systems initiative, 

we are building a platform for developmental neural 

toxicity testing on a physiologically relevant human model. 

A combination of stem cell biology, tissue engineering 

and bioinformatics, this platform is capable of meeting 

the needs of large-scale chemical toxicity screens 

(Figure 1).

A central characteristic of our platform is that a 

remark able degree of self-assembly, diff erentiation, and 

maturation occurs if appropriately specifi ed precursor 

cells are brought together in the right environment. Th e 

most impressive experimental example of self-assembly 

is the formation of teratomas by ES cells and iPS cells. If 

allowed suffi  cient time to develop, these teratomas form 

well-developed, highly stratifi ed neural structures that 

closely recapitulate early brain development [19], and 

form other advanced structures requiring complex 

inductive interactions between germ layers, including 

gut, teeth, and hair [12]. Th e diff erentiation and self-

assembly of polarized cortical tissues, including ventri-

cular, early and late cortical plate, and Cajal–Retzius 

zones, has also been demonstrated previously from the in 

vitro culture of ES cell-derived aggregates, a signifi cant 

fi nding for our platform [20].

To create these physiologically relevant three-dimen-

sional structures, we embed human ES/iPS cell-derived 

endothelial cells, pericytes, and primitive macrophages 

(microglial precursors) into tunable poly(ethylene glycol) 

hydrogels displaying specifi c peptide motifs that promote 

capillary network formation (Figures 1a and 2). We then 

overlay this mesenchymal layer with neural and glial pre-

cursors to mimic in vivo cephalic mesenchyme–neural 

epithelial interactions, both to promote the formation of 

the polarized layers of the cerebral cortex and to allow 

the formation of endothelial networks with blood–brain 

barrier properties (Figure  1a). Poly(ethylene glycol) 

hydrogels have found widespread use in three-dimen-

sional cell culture due to their ease of processing and 

biocompatibility [21]. Cells can be readily encapsulated 

within these gels using photo-polymerization [22-24] 

(Figure  2a), providing a simple mechanism to generate 

hydrogel arrays with well-defi ned local spots directly 

amenable to high-throughput screens. A key prerequisite 

of this approach is a consistent and scalable source of 

correctly specifi ed precursors. Recent progress in deriv-

ing neural, glial, and vascular precursors from human 

pluripotent stem (ES and iPS) cells [25-29] provides this 

scalable source for the fi rst time.

Th e nature of developmental timing poses perhaps the 

most signifi cant challenge to this project. Th e timing of 

human ES/iPS cell diff erentiation largely recapitulates the 

timing of normal human fetal development. Although it 

is possible to set up cultures of diff erentiating human 

cells that interact for 9  months or longer, such culture 

systems would not be practical for high-throughput drug 

screens. Our strategy, then, is to prediff erentiate the early 

precursors of the components of the cerebral cortex in 
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large, defi ned batches, cryopreserve them, and later 

combine them into three-dimensional hydrogel assem-

blies, allowing those assemblies to interact and further 

mature for a more limited time during drug exposure.

Platform readout

Optimized screen readouts and machine learning tools 

are also important components of this platform. Our 

basic premise is that toxicants change the basic physio-

logy of cells, and that these changes directly or indirectly 

cause changes in gene expression profi les that can, in 

turn, be used to classify specifi c classes of toxicants. Th e 

three-dimensional neural/glial/vascular assemblies, which 

initially consist of seven cell types, are complex; with 

further maturation, additional cell types or subtypes may 

also emerge. Because the specifi c targets of a novel toxic 

agent will be unknown and could be as diverse as the 

ensemble of molecules contained in these assemblies, 

readouts must refl ect this complexity and have a sub-

stantial dynamic range, as minor alterations in the 

assemblies’ cellular subcompartments may refl ect rele-

vant in vivo toxicity.

Importantly, the recent dramatic fall in the cost of 

high-throughput sequencing makes a readout based on 

expression profi ling very desirable for drug screening 

purposes, as RNA-Seq allows the monitoring of complex 

samples with an excellent dynamic range and at a 

reasonable price per sample. Th is desirability of using 

gene expression profi ling to better understand toxic 

responses is shown in recent reports using ES cell-based 

and other cellular models [30-33].

Th e platform’s fi nal component, a machine learning 

algorithm, uses the gene expression profi les of cells 

exposed to known developmental neural toxins to predict 

Figure 1. Platform set-up diagram. (a) Neural and glial progenitor cells are assembled on a three-dimensional (3D) vascular network formed by 

endothelial cells, pericytes, and microglia in poly(ethylene glycol) hydrogel to promote the formation of stratifi ed neural epithelium with a vascular 

network. (b) The neural vascular assembly from (a) will be exposed to a training drug set. The gene expression profi les from the training set will be 

used to establish a drug toxicity prediction model using a machine learning algorithm. (c) The model established in (b) can be used to predict the 

toxicity of an unknown chemical.
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the neural toxicity of chemicals without previous toxicity 

information (Figure 1b,c).

Conclusion

In short, we combine the developmental potential of 

human pluripotent stem cells, the modular nature of the 

tunable hydrogels, and the discriminatory power of 

machine learning tools to create a highly sensitive model 

suitable for large-scale predictive developmental toxico-

logy screens (Figure 1). Th is platform, and other NIH 

Microphysiological Systems, should provide a better 

understanding of chemical impacts on human health.
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