
Abbah et al. Stem Cell Research & Therapy 2014, 5:38
http://stemcellres.com/content/5/2/38
REVIEW
Assessment of stem cell carriers for tendon tissue
engineering in pre-clinical models
Sunny Akogwu Abbah1, Kyriakos Spanoudes1, Timothy O’Brien2, Abhay Pandit1 and Dimitrios I Zeugolis1*
Abstract

Tendon injuries are prevalent and problematic, especially
among young and otherwise healthy individuals. The
inherently slow innate healing process combined
with the inevitable scar tissue formation compromise
functional recovery, imposing the need for the
development of therapeutic strategies. The limited
number of low activity/reparative capacity tendon-
resident cells has directed substantial research
efforts towards the exploration of the therapeutic
potential of various stem cells in tendon injuries
and pathophysiologies. Severe injuries require the
use of a stem cell carrier to enable cell localisation
at the defect site. The present study describes
advancements that injectable carriers, tissue
grafts, anisotropically orientated biomaterials, and
cell-sheets have achieved in preclinical models as
stem cell carriers for tendon repair.
different tissues [15-19]. Current evidence indicates that
the therapeutic efficacy of stem cells relies heavily on
Introduction
Large tendon injuries that necessitate surgical interven-
tion are of significant concern not only among athletes,
but also in the general population. These injuries are
often associated with prolonged disabilities that require
long treatments and painful rehabilitation periods. Func-
tional recovery is often incomplete, leaving the patient
with life-long joint instability, which frequently result in
arthritis [1]. Expectedly, this has serious social and eco-
nomic implications. Specifically, an estimated 30 million
cases of tendon and ligament injuries are seen worldwide
annually, leading to extensive loss of man-hours [2]. The
annual USA expenditure is estimated at US$30 billion,
whilst European healthcare expenditure exceeds €115
billion per year [3,4]. The increasing return of people
to various rigorous sporting activities after decades of
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sedentary lifestyle, coupled with the increasing life ex-
pectancy, is expected to further increase tendon injury
incidents, putting a further financial strain on healthcare
systems [5].
The limited number of low activity/reparative capacity

resident cells in tendon tissues has been postulated to be
the main culprit for the restricted regenerative capacity
of tendon tissue [6-10]. Cell-based therapies promise to
recapitulate essential biological processes of neonatal
tendon development that would culminate in the regen-
eration of fully functional neo-tendon tissue. Indeed,
cell-based tissue engineering strategies have witnessed a
drift from an era focused primarily on feasibility studies
to an era focused on optimisation and specific engineering
of the implantable tissue constructs, appraised alongside
therapeutic efficacy and safety [11-14]. This progress has
come in parallel with increasing understanding of the intri-
cate molecular mechanisms underlying the therapeutic
potential of stem cells and their physical environment in

their capacity to secrete a spectrum of bioactive/trophic
molecules, with an extensive range of functions, including
chemo-attraction, immunomodulation, angiogenesis, anti-
scarring and anti-apoptotic properties [20-22]. In a sense,
this stem cell pool will act as a biological factory designed
and built to function as a production line for progenitor
cells and/or bioactive molecules, until differentiation
towards the host tissue lineage occurs. It is therefore
imperative to ensure optimal residency of viable and
potent stem cells at the site of injury that will ultimately
enable recapitulation of native cellularity back to normal,
pre-injury levels.
The major obstacles to direct cell injections are the

localisation of the cell suspension at the target tissue,
optimum timing of injection with respect to different
healing stages, and maintenance of control over cell fate
and functionality [23-26]. From a surgical perspective,
stable fixation of any implanted graft is of paramount
importance to avoid disruption under the dynamic
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mechanical environment native to the tendon. Although
in equine patients anatomic characteristics and injury
type preponderance [27,28] allow treatment of small de-
fects in superficial digital flexor tendon with intratendi-
nous injections, even with a small number (as low as
645,000) of bone marrow-derived mesenchymal stem cells
(BMSCs) [29-31], the complexities of human tendon in-
juries often call for surgical debridement and implantation
of a mechanically resilient three-dimensional scaffold that
will sustain the mechanical loads of the local environment
until definitive healing takes place. To this end, delivery of
an appropriate cell population using injectable hydrogels,
autologous, allogeneic or xenogeneic tissue grafts, an-
isotropically ordered biomaterials, or cell sheets, with
localised and sustained delivery of bioactive/therapeutic
molecule capacity (Figure 1), is at the forefront of
academic, clinical and industrial investigation for tendon
tissue engineering [32-37]. Here, we discuss the effective-
ness demonstrated in tendon preclinical models of various
stem cell populations and carrier systems.
Figure 1 The tendon repair and regeneration toolbox. Advancements
for tendon repair. Injectable carriers can act as stem cell carriers with poten
strategy also offers the benefit of being minimally invasive, which is of criti
Tissue grafts and anisotropic scaffolds are favoured for large tendon injurie
an excellent three-dimensional environment for cell infiltration and growth
Although cell-sheets have not taken off for tendon repair, preliminary res
investigated further in the future, either alone or in combination with a c
whilst preserving cell phenotype for the period required to develop the i
can be further enhanced using bioactive/therapeutic molecules; controlle
cells, whilst positively interacting with the host. ADSC, adipose-derived st
induced pluripotent stem cell; SC, stem cell; TSC, tendon stem cell.
Injectable stem cell carriers
Minimally invasive injectable carriers, based on natural or
synthetic polymers, are often utilised as carriers for local-
ised and controlled release of cells along with bioactive/
therapeutic molecules in musculoskeletal repair. Such sys-
tems protect cell membranes from rupture during injec-
tion and facilitate prolonged cell survival and maintain
cell functionality at the harsh injury environment, while
the presence of functional moieties responsive to specific
stimuli allow spatiotemporal release of their cargo, and
the fast in situ self-assembly rate (<10 minutes) enables
conformity with the injury site and direct integration with
the host tissue [38-47]. Fibrin- and collagen-based hydro-
gels dominate in the tendon repair field. Both are natur-
ally occurring materials characterised by low antigenicity
and immunogenicity, and their inherent properties, such
as cell recognition signals that promote cell attachment,
migration and growth that stimulate tissue healing and
regeneration, their ability to form scaffolds of different
conformations with high tensile strength, and their
in cell biology have made available a number of stem cell populations
tial to enhance clinical outcomes, especially in small defects. This
cal importance, particularly for repeated or staged cell transplantations.
s. Such systems mimic the biophysical milieu of native tendons, offer
, and facilitate directional cell growth and new tissue formation in vivo.
ults are very promising indeed and we anticipate their efficacy to be
arrier system that would provide adequate mechanical properties,
mplantable device. The therapeutic potential of the carrier systems
d release capabilities amplify the in vivo potency of the implanted
em cell; BMSC, bone marrow-derived mesenchymal stem cell; iPSC,
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therapeutics delivery capacity, further advocate for their
use as biomaterials [48-52].
Fibrin-based hydrogels that allow homogenous BMSC

distribution have been used in a rabbit Achilles tendon
transaction model, resulting in improved collagen fibre
organisation and increased mechanical properties at an
early time-point (3 weeks post-implantation). This func-
tional improvement was, however, transient as it was lost
6 weeks later, coinciding with fibrin degradation [53].
Whether enhanced fibrin stability (prolonging its cell
immobilisation capacity) will lengthen the in vivo thera-
peutic effectiveness is yet to be seen. This study contra-
dicts earlier work demonstrating that fibrin glue has the
potential to maintain BMSC viability within rabbit patella
tendon defects for at least 8 weeks post-implantation
[54]. Another study, in a rat patellar tendon defect model,
demonstrated that liquid fibrin loaded with either BMSCs
or human fibroblasts results in a more mature tissue
formation with more regular patterns of cell distribution
[55,56]. Contrary to these findings, implantation of fibrin
glue loaded with BMSCs in a rat rotator cuff tendon de-
fect model concluded that although the cells were present
and metabolically active for the duration of the study
(4 weeks), they did not improve the structural characteris-
tics nor the strength of the neotendon [57]. The above
results indicate that although fibrin is a suitable carrier
for BMSCs (presumably because of its ability to form
clots), its suitability for tendon repair is inconclusive and
may largely depend on the site and type of injury.
Collagen-based hydrogels have also been used exten-

sively as injectable stem cell carriers for tendon repair
[55]. When collagen type I was loaded with rabbit
BMSCs and implanted into a rabbit patellar tendon
defect, significant biomechanical improvements were
observed within 4 weeks post-implantation; however, no
histological or morphometric differences were observed
between the BMSC-loaded and BMSC-free groups [55].
In a more recent study, a rabbit Achilles tendon repair
model was used to assess the influence of the collagen
hydrogel to autologous rabbit BMSC ratio on tissue
repair [56]. The results indicate that higher cell-to-
collagen ratios jeopardise the structural integrity of the
gel in vitro to such an extent that it may become practic-
ally unusable in vivo. Therefore, the in vivo effect of high
cell-to-collagen ratios could not be directly compared
to low cell-to-collagen ratios in that study. However,
in vivo results obtained 12 weeks after implantation of
relatively low cell-to-collagen ratio (that is, low cell
density) constructs showed no dose-dependent decline
in biomechanical competence and histological appearance
of the treated tendon defects. This study therefore indi-
cates that the cell-to-vehicle matrix ratio is an important
parameter for construct fabrication in cell-based func-
tional tendon tissue engineering.
Platelet-rich plasma (PRP) when mixed with thrombin
will clot and thus can be used as an injectable cell car-
rier. The additional high growth factor content makes it
an attractive material for musculoskeletal repair [58-60].
Functional evaluation of PRP/adipose tissue-derived
stem cell (ADSC) gels implanted in a rabbit Achilles
tendon defect model revealed increased tensile strength
compared to PRP gels alone [61]. Similarly, injured rat
Achilles tendons treated with PRP/tendon stem cells
(TSCs) showed a synergistic healing effect based on
molecular level analysis of tendon-related genes [62].
However, the presence of transforming growth factor-β
in PRP may be more pathogenic than reparative, as it
has been shown to drive the differentiation of various
stem cells towards bone and cartilage lineages [63-68].
Numerous studies have also discussed the controversial
results of PRP treatment in orthopaedic practice [69-71].
In accordance with previous observations [72,73], we
believe that although PRP/stem cell systems may have
great potential in tendon repair, thorough analyses, along
with long-term preclinical studies, should be carried out
to safely determine the clinical potential of this therapy.
This is particularly important based on recent studies
indicating that a high concentration of leukocytes in
PRP results in persistent expression of inflammatory
cytokines and is associated with scar tissue formation [74].
Overall, injectable carriers provide a conducive three-

dimensional environment for stem cell proliferation,
differentiation, migration and growth. Such carriers have
potential in treating small injuries and for controlled/
localised delivery of cells and biologics. However, such
semi-solid systems are not suitable for large tendon
defects, where structural integrity is of paramount
importance.

Tissue grafts as stem cell carriers
Tissue grafts, such as palmaris/plantaris longus or
semitendinosus-gracilis autografts and Achilles tendon, ro-
tator cuff allografts or xenografts, are currently considered
the gold standard in clinical practice, given their almost
identical structure and composition to the injured tendon
tissue. Furthermore, their rapid fixation capability, fast
healing rate and almost normal tissue ingrowth in both
preclinical animal models and human clinical studies have
led to the commercialisation of several products [75]. In an
attempt to identify an ideal cell population to complement
tendon healing induced by acellular tendon grafts, epite-
non tenocytes, tendon sheath fibroblasts, BMSCs and
ADSCs were assessed by histological analysis in a rabbit
flexor profundus tendon defect model [76]. Although no
differences were observed between the different cell popu-
lations, all recellularised graft groups showed improved
histological characteristics compared to control acellular
grafts. Histological and biomechanical analysis of rabbit
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Achilles tendon allografts loaded with BMSCs for anterior
cruciate ligament (ACL) reconstruction strongly showed
that they resembled normal ACL insertion and exhibited
significantly higher failure loads than their control counter-
parts [77]. Although this study showed that exogenously
loaded mesenchymal stem cells enhanced the healing
process of allografts at the insertion site, mid-substance
construct rupture was observed during mechanical testing.
From a clinical perspective, however, a major bottleneck
associated with ACL repair is the restoration of normal
tissue characteristics at the insertion site; this bottleneck
is attributable to tunnel geometry and inhomogeneity of
the graft-tunnel interface [78]. This has motivated the
development of multiple surgical techniques to improve
healing. In a rat tendon-bone healing model, histological
analysis demonstrated that Achilles tendon grafts loaded
with synovial mesenchymal stem cells accelerated early
remodelling, highlighting the inherent reparative potential
of mesenchymal stem cells [79]. Similarly, ACL-derived
stem cell sheets (CD34+ cells) rolled around allogeneic
tendon tissue demonstrated histological and biomechanical
benefits in a rat ACL reconstruction model [80,81]. Re-
cently, alternative approaches, such as in vitro expansion
of TSCs/ADSCs on self-assembled or engineered tendin-
ous matrices and allografts, have been reported [82-84].
These efforts aim to stimulate the proliferation of TSCs
and to promote differentiation of ADSCs towards the
tenogenic lineage for eventual in vivo application. Given
that tissue grafts continue to hold clinical appeal, ad-
vancements in decellularisation techniques that promote
preservation of the extracellular matrix composition and
lower graft versus host reactions will help to hone tissue
grafts into efficient stem cell carriers.

Anisotropically ordered materials as stem cell
carriers
Biomaterial-based graft substitutes for the treatment of
tendon and ligament injuries provide the opportunity to
avoid the morbidity issues associated with autografts
[85-87]. They are particularly important in degenerative
[88-91] or congenital [92,93] conditions, where autografts
are not available in sufficient quantities. Tendons are dense
connective tissues consisting primarily of type I collagen
arranged in a hierarchical order: tropocollagen molecules
(approximately 1.5 nm in diameter) are packed closely
together to form fibrils (approximately 80 to 100 nm in
diameter), fibres (approximately 1.0 to 30 μm in diameter)
and fibre bundles (approximately 1,000 to 3,000 μm in
diameter), which ultimately form the tendon unit [94-98].
Although numerous material-based tendon equivalents
have been developed over the years, fibrous constructs
(made through wet spinning [99-103], isoelectric focusing
[104-106] or dry spinning [107-112] processes) lead the
race in maintaining tendon cell phenotype, induction of
tenogenic differentiation of progenitor cells, tendon regen-
eration and functional recovery in relevant in vivo models.
This is attributable to the specific hierarchical order of the
tendon unit. Indeed, such scaffold conformations provide
topographical, spatial, chemical and immunological control
over cells. They also provide mechanical stability/integrity
for large tendon defects and a template for the organisa-
tion of the neotendon tissue. Although dry spinning has
been shown to denature the triple-helical conformation of
natural biopolymers [113,114], it has been extensively used,
with profound success, as a stem cell carrier with synthetic
polymers. In a large rotator cuff rabbit model, electro-spun
polyglycolic acid fibres loaded with autologous BMSCs
exhibited not only a higher type I to type III collagen ratio,
but also significantly improved tensile strength compared
to the control groups at 16 weeks post-implantation [115].
A knitted polylactide-co-glycolide micro-fibrous construct
loaded with allogeneic rabbit BMSCs and implanted in a
rabbit Achilles tendon model demonstrated similar histo-
logical results to the construct alone and native tendon
repair. However, the tensile stiffness of BMSC-seeded
constructs was only 87.0 % of that of the normal tendon
and the modulus was only 62.6 % of that of the normal
tendon [116].
To further enhance stem cell retention on fibrous ma-

terials, composite implantable devices based on a hydro-
gel stem cell carrier and a fibrous load-bearing structure
have been assessed. In a rabbit Achilles tendon repair
model, pre-tensioned polyglyconate sutures loaded with
autologous rabbit BMSCs in contracted collagen gel
demonstrated significantly improved cellular organisa-
tion, extracellular matrix organisation and biomechanics
[117]. In a patellar tendon repair model, polyglyconate
sutures loaded with autologous rabbit BMSCs in
contracted collagen gel demonstrated significantly higher
mechanical properties than the naturally repaired coun-
terparts, whilst no significant differences in cellular
organisation or histological appearance were observed
between the groups at 12 and 26 weeks post-surgery
[118]. Electro-spun polylactide-co-glycolide scaffolds,
loaded with heparin/fibrin hydrogel, ADSCs and platelet
derived growth factor BB demonstrated improved tendon
healing in a dog model of transected flexor digitorum
profundus tendons [119]. Collectively, these studies show
that aligned fibrous scaffolds that closely imitate the
architecture of tendon tissue offer structural and
mechanical benefits, along with an instructive physical
environment that guides new functional tissue devel-
opment. However, such carriers alone are insufficient
for complete recapitulation of tendon function. Func-
tionalisation with a hydrogel that would enable local-
isation/retention of seeded cells and spatiotemporal
release of vital biomolecules would further improve
clinical outcomes.
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Table 1 Efficacy of various stem cell populations/carriers in small preclinical tendon defect models

Experimental details
Accelerated
tendon healing

Enhanced
tendon strength

Improved
tendon
histology Reference

Allogeneic BMSCs with fibrin hydrogel Rabbit Achilles or rat patellar tendon X ✓ ✓ [126-128]

Autologous ADSCs with PRP hydrogel Rabbit Achilles tendon ✓ ✓ ✓ [61]

Autologous BMSCs with collagen I hydrogel Rabbit Achilles tendon X ✓ ✓ [55]

Autologous BMSCs with PLGA sheet Rabbit rotator cuff tendon ✓ ✓ ✓ [115]

Allogeneic ACL-derived CD34+ cell sheet with tendon graft Rat ACL ✓ ✓ ✓ [81]

Autologous ADSCs with heparin, fibrin and PDGF BB hydrogel on electro-
spun PLGA Dog flexor digitorum profundus tendon

✓ [119]

Embryonic stem cell sheets Rat patellar tendon ✓ ✓ ✓ [129]

Induced pluripotent stem cells and fibrin gel Rat patellar tendon ✓ ✓ ✓ [130]

TSC sheet Rat patellar tendon ✓ ✓ ✓ [131]

Engineered BMSCs on collagen scaffold Rat Achilles tendon ✓ ✓ ✓ [132-134]

A tick indicates a positive outcome and a cross indicates a negative/suboptimal improvement compared to control. Entries are blank when the study did not
assess the parameter mentioned. ACL, anterior cruciate ligament; ADSC, adipose-derived stem cell; BMSC, bone marrow-derived mesenchymal stem cell; PDGF BB,
platelet derived growth factor BB; PLGA, polylactide-co-glycolide; PRP, platelet rich plasma; TSC, tendon stem cell.
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Conclusions and future perspectives
Stem cell-based tendon tissue engineering is an increas-
ingly vibrant research area that continues to witness
growing interest in many aspects. Although tendons de-
velop fibrocartilage and ossification in response to injury
[120] and BMSC implantation has resulted in ectopic
bone formation in mouse [121], rat [122] and rabbit
[123-125] models, overwhelming preclinical results in
small animal models demonstrate improved tendon
healing, biomechanics and histological characteristics
(Table 1). Whether these results can be reproduced in
large animal models, which are subject to similar forces
to humans and will therefore allow acquisition of more
clinically relevant data, will have to be seen.
This review clearly indicates that BMSCs and ADSCs

are leading contenders for a suitable stem cell popula-
tion for tendon repair. This may be further confirmed
by currently running clinical trials (ClinicalTrials.gov
identifier NCT01856140 - allogeneic ADSC injection;
ClinicalTrials.gov identifier NCT01687777 - autologous
BMSCs with collagen type I membrane). Very few studies
have been conducted with embryonic stem cells [129],
induced pluripotent stem cells [130], perivascular stem
cells [135,136], TSCs [121,131,137] and engineered cells
[132-134], despite the fact that all have shown promising
results in vitro and in vivo. Should their efficacy be
proven consistently in other clinical targets, it is certain
that their potential will be studied in a more systematic
fashion in tendon and ligament repair.
Among the biomaterial-based stem cell carriers, inject-

able hydrogels for small defects and anisotropic scaffolds
for large defects are the primary focus of scientific
research. We speculate that difficulties in recellularising
tendon grafts, due to the compact tissue structure,
prohibits extensive research in the area. Cell-sheet tissue
engineering or tissue engineering by self-assembly strat-
egies have just started taking off in tendon repair. If
in vitro microenvironment modulators can be developed
to enhance matrix production, to maintain cell pheno-
type for the duration of the device manufacturing, and
to provide adequate mechanical properties [138-141],
such technologies are anticipated to lead academic,
clinical and industrial research in the years to come.
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