
Haematopoiesis represents one of the best studied 

models of adult stem cell development and diff erentiation 

[1,2]. Powerful techniques allow purifi cation and in vitro

as well as in vivo functional assays of small subsets of 

cells, from haematopoietic stem cells (HSCs) via a 

plethora of intermediate progenitors to fully mature cell 

types. Transcription factors (TFs) directly regulate gene 

expression and thus control cellular phenotypes. It is no 

surprise, therefore, that TFs have emerged as some of the 

most powerful regulators of both normal development 

and disease.

TFs play important roles during haematopoiesis, from 

stem cell maintenance to lineage commitment and 

diff erentiation. However, relatively little is known about 

the way in which regulatory information is encoded in 

the genome, and how individual TFs are integrated into 

wider regulatory networks. Based on the recent analysis 

of large-scale eff orts to reconstruct tissue-specifi c regu-

latory networks, it has been suggested that transcriptional 

regulatory networks are characterised by a high degree of 

connectivity between TFs and transcriptional cofactors. 

Extensive cross- and autoregulatory links therefore create 

densely connected regulatory circuits that control the 

large numbers of tissue-specifi c eff ector proteins (en-

zymes, structural proteins) [3,4] (Figure 1). To under-

stand the functionality of large mammalian regulatory 

networks, it will therefore be important to identify 

downstream target genes of specifi c TFs as well as gain 

insight into combinatorial TF interactions. Th is in turn 

will not only provide fundamental insights into normal 

development, but also advance our understanding of how 

deregulation of networks contributes to pathology.

Th e cis-regulatory regions of a gene locus can be 

thought of as diff erent modules, each partaking in an 

important role, such as driving expression of the gene to 

a specifi c subset of cells or a specifi c tissue type. Th e 

activity of each regulatory region is controlled by a 

distinct set of upstream regulators. Th e individual regula-

tory regions within a given gene locus may have over-

lapping or very distinct upstream regulators, and it is the 

combined activity of all these regions that ultimately 

controls gene expression. Comprehensive identifi cation 

and characterisation of true functional cis-regulatory 

regions therefore represent an essential prerequisite to 

integrate important regulatory genes into wider trans-

crip tional networks. Traditionally, DNaseI mapping was 

performed to identify regions of open/accessible chro-

matin. More recently, comparative genomic sequence 

analysis has been used to identify highly conserved 

sequences, which were taken to represent candidate 

regulatory elements based on the premise that sequence 

conservation indicated an important function [5-7]. Th e 

most recent development has been that of whole genome 

re-sequencing, which when coupled with chromatin 
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immuno precipitation assays allows genome-wide map ping 

of the chromatin status for a given histone modifi cation 

[8]. Th ough more predictive than previous approaches, 

these techniques still require functional validation of 

candidate elements, which involves in vivo and in vitro

experiments to assess the true function of a given 

candidate regulatory region.

Several gene loci coding for TFs essential for haemato-

poiesis have been characterised using a combination of 

the above techniques. Collectively, these studies provided 

important insights into TF hierarchies and regulatory 

network core circuits [9-11]. Th is review will specifi cally 

focus on three haematopoietic loci, encoding the key 

haematopoietic regulators Scl/Tal1, Lmo2 and Gfi 1.

Transcriptional regulation of Scl

Th e basic helix-loop-helix TF Scl/Tal1 is a key regulator 

of haematopoiesis with additional important roles in the 

development of the vascular and central nervous systems 

[12-16]. Within the haematopoietic system, Scl is essen-

tial for the development of HSCs as well as further diff er-

entiation into the erythroid and megakaryocytic lineages 

[17].

Since correct spatio-temporal expression of Scl is 

crucial for the appropriate execution of its biological 

functions, much eff ort has been invested into under-

stand ing how Scl is regulated. Using a combination of 

long-range comparative sequence analysis and both in 

vitro and in vivo functional analysis, multiple cis-regula-

tory elements have been identifi ed in the murine Scl

locus, each of which directs expression to a subdomain of 

endogenous Scl expression when tested in transgenic 

mice (Figure 2). Scl has three promoters located in 

diff erent exons (exons 1a, 1b and exon 4), none of which 

displayed haematopoietic activity when tested in 

trans genic mice. A search for additional cis-regulatory 

elements led to the identifi cation of three haematopoietic 

enhancers (-4, +19 and +40 kb). Th e -4 Scl enhancer, 

characterized by the presence of fi ve Ets sites, drives 

expression to endothelium and fetal blood progenitors 

[18]. Th e +19 Scl enhancer was shown to drive expression 

of Scl in HSCs, haematopoietic progenitors and 

endothelial cells [19-21] and critically depended on an 

Ets/Ets/GATA composite motif shown to be bound in 

vivo by Elf-1, Fli-1 and Gata2 [22]. Of note, the +19 

enhancer was fl anked by a nearby hypersensitive site 

(+18 Scl element), which did not function as an enhancer 

but contains a mammalian interspersed repeat that is 

essential for its ability to ‘boost’ activity of the +19 

element [23]. Th e +40 Scl enhancer drives expression to 

erythroid cells [24,25] as well as midbrain and is 

characterized by the presence of two Gata/E-box motifs. 

Mutation or deletion of a single one of these motifs leads 

to a loss of function of the enhancer [24,25].

Taken together, these studies have highlighted the 

presence of three haematopoietic enhancers within the 

murine Scl locus, with distinct yet overlapping regulatory 

codes that contribute to the overall correct spatio-

temporal expression of Scl. Interestingly, a recent study 

comparing the functionality of the mouse Scl enhancers 

with their corresponding chicken counterparts suggested 

that elements shared by mammals and lower vertebrates 

exhibit functional diff erences and binding site turnover 

between widely separated cis-regulatory modules [26]. 

Remarkably, however, the regulatory inputs and overall 

expression patterns remain the same across diff erent 

species. Th is in turn suggested that signifi cant regulatory 

changes may be widespread, and not only apply to genes 

with altered expression patterns, but also to those where 

expression is highly conserved.

Transcriptional regulation of Lmo2

Th e Lim domain only 2 gene (Lmo2) encodes a trans crip-

tional cofactor that is essential for haematopoiesis 

[27,28]. Th e Lmo2 protein does not bind to DNA directly 

but rather participates in the formation of multipartite 

DNA-binding complexes with other TFs, such as Ldb1, 

Scl/Tal1, E2A and Gata1 or Gata2 [29-31]. Lmo2 is widely 

expressed across haematopoiesis with the exception of 

mature T-lymphoid cells where aberrant expression of 

Lmo2 results in T-cell leukaemias [32].

Lmo2 contains three promoters: the proximal pro moter, 

which drives the majority of expression in endothelial 

cells [33]; the distal promoter, which is active in the fetal 

liver and specifi c T-cell acute lymphoblastic leukemia 

(T-ALL) cell lines [34]; and the intermediate promoter, 

which was detected in CD34+ cells and was implicated in 

mediating LMO2 expression in T-ALL patients where 

high levels of LMO2 were present in the absence of any 

Figure 1. Transcription factor networks control cellular 

phenotypes. Transcription factors (TFs) together with cofactors 

(Co-TF) form densely connected regulatory networks that defi ne 

cellular phenotypes by regulating large numbers of eff ector genes 

coding for cell-type-specifi c structural proteins and enzymes.
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translocation involving the LMO2 locus [35]. However, 

none of the three promoters on their own displayed 

robust expression when tested in transgenic mice [33,36], 

which led to the identifi cation of eight enhancer elements 

dispersed over 100 kb that could recapitulate the 

expression of Lmo2 in normal haematopoiesis [36]. Of 

note, while individual elements augmented endothelial 

expression of the proximal promoter, robust haemato-

poietic expression was only observed when they were 

combined together (Figure 3). Th is type of combinatorial 

collaboration between regulatory elements to obtain 

haematopoietic activity has been seen for other gene loci, 

such as Endoglin [37], suggesting a process of step-wise 

and modular activation of the locus during the 

development of blood and endothelial cells from their 

common precursor.

Transcriptional regulation of Gfi 1

Th e Growth factor independence 1 gene (Gfi 1) was origi-

nally identifi ed in a retroviral screen designed to identify 

regulatory pathways that could initiate interleukin-2 

independence in T cells [38]. Within the haematopoietic 

system Gfi 1 is expressed in HSCs [39], specifi c subsets of 

T cells [40], granulocytes, monocytes, and activated 

macro phages [41]. Gfi 1-/- mice lack neutrophils [41,42] 

and Gfi 1-/- HSCs are unable to maintain long-term 

haematopoiesis because elevated levels of proliferation 

lead to eventual exhaustion of the stem cell pool [39,43]. 

Outside the haematopoietic system, Gfi 1 is also specifi -

cally expressed in sensory epithelia, the lungs, neuronal 

precursors, the inner ear, intestinal epithelia and during 

mammary gland development [44-47].

A recent study used a combination of comparative 

genomics, locus-wide chromatin immunoprecipitation 

assays and functional validation within cell lines and 

transgenic animals to identify cis-regulatory regions 

within the Gfi 1 locus [48]. Four regulatory regions (-

3.4  kb min pro, -1.2 kb min pro, +5.8 kb enhancer and 

+35 kb enhancer) were shown to recapitulate endogenous 

expression patterns of Gfi 1 in the central nervous system, 

Figure 2. Scl cis-regulatory elements. The genomic locus of the murine Scl gene and adjacent genes are drawn schematically in the top panel 

(boxes represent exons and arrowheads indicate gene orientation). The middle diagram shows a Vista plot illustrating sequence conservation 

between the mouse and human Scl locus. Functional Scl cis-regulatory elements are highlighted in red. Bottom panels show whole mount LacZ 

staining of embryonic day 12.5 transgenic embryos and relevant histological sections for each individual Scl cis-regulatory element. The -4 Scl 

and +18/19 Scl enhancers target endothelium and haematopoietic progenitors; promoter 1a and the +23 Scl enhancer target ventral midbrain; 

promoter 1b targets hind brain and spinal cord, and the +40 Scl enhancer targets midbrain and erythroid cells [18-21,23-25].
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gut, limbs and developing mammary glands but no 

haematopoietic staining was observed. However, a recent 

genome-wide ChIP-Seq experiment [49] revealed binding 

of Scl/Tal1 to a region situated 35 kb upstream of the Gfi 1 

promoter within the last intron of its 5’ fl anking gene, 

Evi5. Th is element was subsequently validated in trans-

genic assays, which demonstrated lacz staining at multi-

ple sites of haematopoietic stem/progenitor cell emer-

gence (vitelline vessels, fetal liver, and dorsal aorta). 

Moreover, the element was also shown to be bound by 

TFs known to be critical for haematopoiesis, including 

Scl/Tal1, Pu.1/Sfpi1, Runx1, Erg, Meis1, and Gata2, thus 

integrating Gfi 1 into the wider HSC regulatory network. 

Th is study therefore supports the notion that important 

regulatory elements can be located at a signifi cant 

distance from the gene they control (Figure 4), and thus 

emphasize the need for careful interpretation of genome-

wide TF binding datasets [49,50].

Figure 3. Combinatorial interactions of distinct enhancers are critical to recapitulate the endogenous expression of Lmo2. (a) The Lmo2 

gene locus is drawn to scale. Exons are shown as black rectangles. Regulatory elements (-75/-70/-25/-12/pP/+1) are highlighted using shapes 

and distinct colours (-75 = orange diamond; -70 = green octagon; -25 = blue oval; dP = red rectangle; -12 = red triangle; +1 = purple triangle). 

(b) Transgenic animals were generated with many diff erent combinations of the identifi ed regulatory elements. The -75 enhancer and pP showed 

strong expression in endothelium, circulating erythrocytes and fetal liver. The -70 enhancer together with pP showed weak staining in endothelium 

and haematopoietic progenitor cells. The -25 or the -12 enhancer together with pP showed strong expression in endothelium and fetal liver. The +1 

enhancer with pP gave rise to lacZ staining in the tail, apical ridge of the limbs, fetal liver and strong endothelium. Only when these elements were 

coupled together was a staining pattern corresponding to endogenous expression of Lmo2 seen [36]. Strength of staining is indicated: +++, very 

strong; ++, intermediate; +, weak; -, not present.
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Figure 4. Combinatorial transcription factor binding identifi ed the Gfi 1 -35 kb regulatory region. Raw ChIP-Seq read data from [50] were 

transformed into a density plot for each transcription factor and loaded into the UCSC genome browser as custom tracks above the UCSC tracks 

for gene structure and mammalian homology. A discreet binding event for all ten TFs (Scl/Tal1, Lyl1, Lmo2, Gata2, Runx1, Meis1, Pu.1, Fli1, Erg and 

Gfi 1b) can be seen in the last intron of the 5’ fl anking gene, Evi5 (indicated by an asterisk). This region was subsequently shown to drive expression 

in early haematopoietic cells in transgenic mouse embryos [48].
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Transcriptional regulation of other key 

haematopoietic transcription factors

Th e transcriptional control of several other TFs known to 

play important roles within haematopoiesis have also 

been investigated. Runx1 has been shown to be trans-

cribed from two promoter elements, both of which 

collaborate with the Runx1 +23 kb enhancer to drive 

expres sion of Runx1 to sites of HSC emergence [51-53]. 

Moreover, the Runx1 +23 kb region was shown to be 

regulated by important haematopoietic TFs (Gata2, Fli1, 

Elf1, Pu.1, Scl, Lmo2, Ldb1 and Runx1 itself ) [53,54]. Lyl1 

is known to contain a promoter region that can be 

divided into two separate promoter elements that are 

responsible for driving the expression of Lyl1 within 

endothelial, haematopoietic progenitor, and megakaryo-

cytic cells [55]. Th ese promoter elements were shown to 

contain conserved Ets and Gata motifs that were bound 

in vivo by Fli1, Elf1, Erg, Pu.1, and Gata2. Multiple 

elements within the Gata2 locus have been identifi ed 

(-77  kb, -3.9 kb, -3 kb, -2.8 kb, -1.8 kb, +9.5 kb and 1s 

promoter) [56-58] with the -1.8 kb region being essential 

for maintaining Gata2 repression in terminally diff eren-

tiating cells [58]. Elf1 contains four promoter elements 

(-55 kb, -49 kb, -21 kb and proximal), which are used in a 

cell-type-specifi c manner in combination with a lineage-

specifi c -14 kb enhancer element [59]. Enhancer elements 

utilising the Ets/Ets/Gata regulatory code, originally 

defi ned in the Scl +19 enhancer, were also identifi ed in 

the Fli1, Gata2, Hhex/Prh and Smad6 gene loci [5,57]. 

Th e picture emerging, therefore, is that transcriptional 

control of important haematopoietic TF loci is achieved 

through multiple regulatory elements but the number of 

upstream regulators may be relatively small. Th e same 

binding motifs are repeatedly found, but it is the precise 

arrangement within a single element as well as the 

interactions between elements that ultimately control 

expression.

Conclusion

Recent analysis of gene regulatory networks controlling 

pluripotency in embryonic stem cells suggests that a 

fi nite number of major combinatorial interactions are 

critical in controlling cellular phenotypes [60,61]. Identi fi -

cation and subsequent functional characterisation of 

specifi c regulatory elements provides a powerful route 

into deciphering these combinatorial regulatory inter-

actions. Whilst traditional methods of identifying regula-

tory elements should not be overlooked, it is essential to 

integrate new genome-wide methods to ensure that regu-

la tory elements outside traditional gene loci boundaries 

are not overlooked. With the genome-wide mapping of 

TF binding events now eminently feasible, the impor-

tance of sequence conservation as a primary technique 

for identifi cation of regulatory elements will diminish. 

Nevertheless, genome-wide mapping of binding events is 

descriptive and therefore no substitute for conventional 

functional assays, which are therefore likely to remain an 

important component of any research programme aimed 

at elucidating transcriptional control mechanisms.
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