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Abstract

strains and whether this was mediated by NF-kB.

or by the addition of curcumin to culture media.

Introduction: Mesenchymal stem cells (MSCs) have the ability to repair and regenerate tissue, home to sites of
inflammation, and evade the host immune system. As such, they represent an attractive therapy for the treatment
of autoimmune inflammatory diseases. However, results from in vivo murine studies in inflammatory arthritis have
been conflicting, and this may be due to the genetic background of the MSCs used. It is known that the
inflammatory milieu may influence properties of MSCs and that, in the case of human bone marrow-derived MSCs,
this may be mediated by the nuclear factor-kappa-B (NF-kB) pathway. We sought to determine whether
pro-inflammatory cytokines altered the differentiation and migration capacity of murine MSCs from different mouse

Methods: The differentiation and migration of FVB and BALB/c MSCs were carried out in the presence of varying
concentrations of tumor necrosis factor-alpha (TNFa) and interleukin (IL)-1(3, and the NF-kB pathway was inhibited
in one of two ways: either by transduction of MSCs with an adenoviral vector expressing a super-repressor of NF-«B

Results: Both BALB/c and FVB MSCs were sensitive to the effect of pro-inflammatory cytokines in vitro. TNFa and
IL-1B suppressed BALB/c osteogenesis and adipogenesis and FVB osteogenesis. The migration of both cell types
toward media containing fetal bovine serum was augmented by pre-stimulation with either cytokine. In neither cell
type were the cytokine effects reversed by abrogation of the NF-kB pathway.

Conclusions: These data show that murine MSCs from different genetic backgrounds may be influenced by an
inflammatory milieu in a manner that is not mediated by NF-«B, as is the case for human MSCs. This is not
mediated by NF-kB. These findings are important and should influence how in vivo trials of murine MSCs are
interpreted and the future development of pre-clinical studies in inflammatory diseases.

Introduction

Mesenchymal stem cells (MSCs) have been isolated from
several sites, including bone marrow and adipose tissue,
and under appropriate stimuli can undergo osteogenesis,
adipogenesis, and chondrogenesis [1]. MSCs can also
modulate the responses of B and T cells to various im-
mune responses in vitro. Proliferation of CD4" and CD8"
T cells can be inhibited in a dose-dependent manner inde-
pendently of major histocompatibility complex (MHC)
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matching with reduced expression of activation markers
[2,3]. Immune regulation by MSCs may be mediated
through secondary effects on other cells such as decreased
tumor necrosis factor alpha (TNFa) and increased
interleukin-10 (IL-10) production from dendritic cells, de-
creased T helper 1 (Th1) and natural killer cell production
of interferon-gamma (IFNy), and the generation of antigen
specific T regulatory cells [1,4-8]. Mechanistically, this im-
mune suppression may be mediated by transforming
growth factor-beta, hepatocyte growth factor, IL-10, or
prostaglandin-E, production [2,5,9,10]. In addition to
these characteristics, MSCs are considered immune privi-
leged cells as they have low MHC II expression and lack
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co-stimulatory molecules [11-13]. These features, in com-
bination with their potential to repair and regenerate,
make MSCs a potentially attractive option for the treat-
ment of immune-mediated inflammatory conditions asso-
ciated with tissue destruction.

One such example is in inflammatory arthritis where,
despite some promising in vitro data [14], studies asses-
sing the effect of MSCs in murine collagen-induced
arthritis (CIA) have generated conflicting results, which
may be partly attributed to differences in the number of
cells used, the route of delivery, and timing of adminis-
tration. Also of importance is consideration of the
source of the MSCs used and the method of isolation;
many studies have used marrow-derived MSCs while
some are isolated from adipose tissue or indeed are cell
lines derived from embryonic mesoderm. The differ-
ences in isolation and expansion techniques used may
have an unknown impact on the ability of the MSCs to
suppress inflammation in vivo [15-23]. Additionally, it
has been demonstrated that both the genetic background
of the MSCs and the local inflammatory milieu may im-
pact on the ability of MSCs to modulate disease activity
in vitro [19,24].

Pro-inflammatory cytokines such as TNFa have signifi-
cant effects on human MSCs; they can modulate proteins
linked to immunosuppressive and signaling pathways
such as manganese superoxide dismutase (SOD2), ribose-
phosphate pyrophosphokinase 1, septin-9, and signal
transducer and activator of transcription 1 (STAT1) [25];
enhance migration [26]; and inhibit chondrogenesis and
osteogenesis [27,28]. There is a negative relationship be-
tween the magnitude of synovial inflammation and the
chondrogenic and clonal capacities of MSCs isolated
from rheumatoid synovium, further supporting the hy-
pothesis that the inflammatory milieu alters MSC charac-
teristics [29]. Differentiation of murine MSCs is also
altered by the inflammatory milieu. Decreased expression
of osteoblast marker genes in TNFa transgenic mice and
suppression of osteogenesis in C57BL/6 MSCs after treat-
ment with TNFa or IL-1p have been described [30,31].
Pro-inflammatory cytokines can also alter the effect of
MSC proliferation in vitro and promote MSC-mediated
tumor growth [20,32].

The mechanism underlying these effects is poorly
understood. Upregulation of ubiquitin ligases has been
implicated as has P-catenin-mediated upregulation of
Wnt signaling [32,30] while both TNFa and IL-1 have
major effects on mitogen-activated protein kinases
(MAPKs) and phosphoinositide 3 kinase (PI3K) path-
ways, which have been shown to mediate migration and
proliferation in chondrocytes and fibroblasts [33-35].
The transcription factor nuclear factor-kappa-B (NF-kB)
plays a central role in coordinating the immune response
in rheumatoid arthritis and CIA through transcription of
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cytokine genes, including TNFa and IL-1, regulation of
genes that influence cell migration as well as differenti-
ation and proliferation, induction of adhesion molecules,
increased vascular permeability, and recruitment of
inflammatory cells [36]. The inhibition of chondrogene-
sis by IL-1p and TNFa in human MSCs is regulated by
NE-kB [27] while activation of this pathway may stimu-
late osteogenesis in human adipose-derived MSCs [37].
Additionally, TNFa-mediated increases in MSC migra-
tion are reversed by inhibition of the NF-kB pathway
[38]. As well as the effects on differentiation and migra-
tion, there are data to suggest that stressors such as
TNFa and hypoxia can upregulate the production of
vascular endothelial growth factor from human MSCs in
an NF-«kB-dependent manner [39]. There is less informa-
tion on the role of NF-kB on murine MSCs, although
there are data showing that migration of C57BL/6 MSCs
toward epithelial cells infected with Helicobacter pylori
is mediated by NF-kB-driven upregulation of TNF« [40].
Additionally, chemical inhibition of the NF-xB pathway
with curcumin can facilitate chondrogenesis in canine
MSCs [41].

Taking these data into consideration and having dem-
onstrated that the genetic background of MSCs may affect
their ability to modulate inflammatory responses [19], we
sought to determine whether mouse MSCs from varying
backgrounds responded differently to pro-inflammatory
cytokines in terms of their fundamental properties of dif-
ferentiation and migration. Given the significant role of
NF-kB in mediating the effect of inflammation on human
MSCs, we also sought to determine whether this pathway
is relevant in murine models. BALB/c and FVB MSCs
represent two allogeneic strains of MSCs with a variable
degree of genetic mismatch relative to the DBA/1 strain
used in CIA, and we hypothesized that co-culture with
either TNFa or IL-1f would influence the differentiation
and migratory capacity of these MSCs to varying degrees.
Given the significant role of NF-kB in mediating the ef-
fect of inflammation on human MSCs, we also sought to
determine whether this pathway is relevant in murine
models.

Materials and methods

MSC isolation

All animal work was carried out with approval from
the National University of Ireland Galway Animal Care
Research Ethics Committee. Bone marrow MSCs were
isolated from 8- to 10-week-old BALB/c (Harlan Labo-
ratories, Indianapolis, IN, USA) and FVB.Cg-Tg(GFPU)
5Nagy/] (FVB-GFP) (The Jackson Laboratory, Bar Harbor,
ME, USA) as previously described [19]. Briefly, marrow
mononuclear cells obtained from long bones were plated
in cold complete isolation medium (CIM): Roswell Park
Memorial Institute (RPMI) 1640, 9% horse serum (HS),



Sullivan et al. Stem Cell Research & Therapy 2014, 5:104
http://stemcellres.com/content/5/4/104

9% fetal bovine serum (FBS), 1% penicillin/streptomycin
(P/S), 1% L-glutamine. After 24 hours, cultures were
washed with phosphate-buffered saline (PBS) and fresh
CIM was added. Medium was changed every 3 to 4 days,
and large colonies were seen after approximately 4 weeks
in passage 0 (P0). Cells were replated in a new T175 flask
in CIM for 14 days. Thereafter, cells were replated at 500
cells per cm” and culture expanded in complete expansion
medium (CEM): Iscove’s modified Eagle’s medium, 9% HS,
9% FBS, 1% P/S, 1% L-glutamine.

Differentiation of MSCs

MSCs were stimulated to undergo adipogenesis, osteogen-
esis, and chondrogenesis as previously described [19].
Briefly, CEM was used as the basal medium for both
adipogenesis and chondrogenesis. Adipogenic medium
contained supplemental 1 mM dexamethasone, 100 nM
indomethacin, insulin, rabbit serum, and high-glucose
Dulbecco’s modified Eagle’s medium. Adipogenesis was
confirmed with Oil Red O stain which was further ex-
tracted with isopropanol for determination of absorbance
at 490 nm to allow comparison between culture condi-
tions. For osteogenesis, MSCs were cultured with 20 mM
B-glycerophosphate, 50 uM ascorbic acid 2-phosphate,
and 100 nM dexamethasone. Fast Violet staining for
alkaline phosphatase and alizarin red staining for calcium
were carried out in the same wells. Calcium deposition
was quantified as previously described [42] with a
StanBio Calcium Liquicolour Kit (Stanbio Laboratory,
Boerne, TX, USA). Where indicated, 10 or 25 uM curcu-
min was added to differentiation assays.

Viral transduction

Optimization of viral transduction was carried out by
using type V adenovirus expressing green fluorescent pro-
tein (AdGFP) supplied by Thomas Ritter (National Uni-
versity of Ireland Galway). Cells were plated at 5 x 10*
cells per well in a 12-well plate in CEM and allowed to
adhere for 24 hours, medium was removed, and 300 pL
of CEM containing AdGFP was added to appropriate
wells. In initial experiments, virus was added at 1,000,
500, or 100 infectious viral particles per cell (multiplicity
of infection, or MOI). Control wells had 300 pL of CEM
alone added, and cultures were centrifuged at 2000 g at
37°C for 90 minutes. After this, medium was replaced
with 2 mL of CEM. Cells were incubated for 48 hours at
37°C and 5% CO, before washing with PBS and trypsini-
zation. Cells were transferred to 1.5-mL tubes, pelleted, re-
suspended in PBS, and transferred to a round-bottomed
96-well plate. Four microliters of 7-aminoactinomycin D
(7-AAD) was added to appropriate wells and incubated on
ice for 15 minutes, allowing cells with compromised cell
membranes to take up the dye. Cells were fixed in 4% para-
formaldehyde for 20 minutes and resuspended in 200 pL

Page 3 of 13

of PBS. GFP expression was analyzed on a Guava Flow
Cytometer with eXpress Plus™ software (EMD Millipore,
Billerica, MA, USA) and expressed as percentage GFP
expression in cell population. Based on results, further viral
transduction was carried out at MOI 500.

Type V adenovirus expressing the super-repressor in-
hibitor of NF-kB (srIkB) [27] and MSCs were transduced
at an MOI of 500. Expression of srIkB by virally trans-
duced cells was confirmed by Western blot. Briefly,
transduced cells were lysed, and total protein concentra-
tion was determined by using the bicinchoninic acid
protein assay (Thermo Fisher Scientific, Waltham, MA,
USA) in accordance with the instructions of the manufac-
turer. Equal amounts (60 pg) of protein were resolved by
SDS-PAGE on a 12% polyacrylamide gel and transferred to
a polyvinylidene difluoride membrane. Rabbit antibodies
against human IkBa and [-actin (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) were used for immunode-
tection with a horseradish peroxidase-conjugated goat
anti-rabbit IgG (Chemicon, Temecula, CA, USA). Bands
were visualized by enhanced chemiluminescence by
using a FlourChem™ image station (Alpha Innotech, San
Leandro, CA, USA).

For assessment of NF-kB activity, MSCs were seeded
in 96-well plates and after 24 hours were transduced
with AdsrIkB or Adnull prior to transduction with either
an NF-kB- or a cytomegalovirus (CMV)-driven luciferase
reporter (AANF-kB-Luc or AACMV-Luc) [27]. Medium
was changed every 72 hours; after 6 days, cells were
stimulated with 5 ng/mL murine (m) TNF«, 10 ng/mL
mlIL-1f, or 100 ng/mL mIL-6 (Peprotech, London, UK).
Four hours after stimulation, cell layers were collected in
20 pL of lysis buffer (Promega, Southampton, UK) and
luciferase activity was determined by using the Dual-
Glo™ Luciferase Assay System (Promega). Activity from
AdNF-kB-Luc groups was normalized to that from
matched AdCMV-Luc controls.

MSC migration assays

In vitro migration assays were carried out by using 24-
well Corning Transwell Inserts (Sigma-Aldrich, St.
Louis, MO, USA) with a surface growth area of 0.33 cm?
and 8-pm pores. Inserts were pre-wetted with serum-
free media, and 6 x 10> MSCs in 200 uL serum-free
medium was seeded onto the upper surface of the trans-
well. Either untransduced MSCs or MSCs expressing
srIlkB were used. Where necessary, cells were pre-
stimulated for 24 hours with 50 ng/mL TNFa or IL-1p
(Peprotech) in CEM. The seeded transwell was placed in
a well with 600 uL of the appropriate medium, contain-
ing curcumin where indicated, and incubated at 37°C
and 5% CO,. After 18 hours of incubation, cells
remaining on the upper surface of the membrane were
removed gently with a wetted cotton swab. The cells
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which had migrated to the lower surface were fixed in
ice-cold methanol. Nuclei were stained for 15 minutes in
Harris hematoxylin, and excess stain was removed with
tap water. The membranes were dried, removed from
the inserts with a scalpel, and mounted on glass slides
by using oil emulsion mounting medium. Images were
taken by using an Olympus IX81 upright microscope,
and migrating cells were counted by using CellIP soft-
ware (Olympus, Tokyo, Japan).

Statistics

Statistical analysis was performed using StatsDirect®
software (StatsDirect Ltd., Altrincham, UK). The Shapiro-
Wilks test was used to confirm a normal distribution of
data. Two-way analysis of variance with post hoc Tukey
analysis was used for comparison between groups. Results
are presented as the mean + standard error of the mean.

Results

MSC isolation and viral transduction

Cells in P2 were homogenous in appearance with a fibro-
blastic morphology and were over 95% positive for CD29.
Both cell types were negative for the hematopoietic
markers CD45 and CD31 and the granulocyte marker
CD34. Both cells types were successfully stimulated to
undergo adipogenesis, osteogenesis, and chondrogenesis
(not shown) in response to appropriate stimuli [19]. This
method of MSC isolation from mouse femurs has been
reported elsewhere [43]. After P2, 7-AAD staining was
used to assess cell death, and 95% viability in both FVB
and BALB/c cells was consistently demonstrated. Cells for
the experiments described here were used at P3 to P6.
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BALB/c and FVB MSCs were transduced with AdsrIkB
by using high-speed centrifugation over 90 minutes with
negligible cell death. Western blotting confirmed overex-
pression of IkBa in transduced cells (Figure 1A) while
functional assays confirmed a suppression of NF-kB-
driven TNFa and IL-1B production compared with cells
transduced with control vectors (Figure 1B).

Suppression of osteogenesis and adipogenesis by
pro-inflammatory cytokines

Both BALB/c and FVB MSCs were stimulated to undergo
osteogenesis. Representative images of alizarin red stain-
ing of FVB and BALB/c MSCs are shown in Figure 2D,E.
FVB MSCs had a greater osteogenic potential, with al-
most 50 pg of calcium deposited per well compared with
12 pg in comparable BALB/c cultures. Osteogenesis as
measured by calcium deposition was suppressed in both
cell types by TNFa and IL-1f. The absolute decrease in
calcium suppression was similar across both cell types
(Table 1). In terms of percentage decrease in calcium
production, the effect was most pronounced in BALB/c
MSCs and occurred in a dose-dependent manner, with
an 86% reduction in calcium deposition with 1 to 10 ng
TNFa, a 17.5% reduction with 0.1 ng/mL TNF«, an
almost 97% reduction with 1 to 10 ng/mL IL-1f, and a
50% reduction with 0.1 ng/mL of IL-1p (Figure 2A). This
dose-dependent suppression was also seen in FVB MSCs
but was less pronounced, with the maximum reduction
of 37.5% seen after co-culture with 1 to 10 ng/mL IL-1p
and 16.6% with 0.1 ng of IL-1p. Co-culture with TNF«
at concentrations of 10, 1, and 0.1 ng/mL resulted in
35%, 14.6%, and 12.5% decreases in calcium deposition,

experiments. *P <0.05 (two-way analysis of variance).
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Figure 1 Overexpression and functional activity of super-repressor inhibitor of nuclear factor-kappa-B (srlkB) in BALB/c mesenchymal
stem cells (MSCs). Western blotting demonstrated that BALB/c MSCs transduced with AdsrlkB at multiplicity of infection (MOI) 1,000 expressed
higher levels of IkB than cells transduced with adnull virus (A). MSCs were transduced with nuclear factor-kappa-B (NF-kB)-driven luciferase and
either AdsrlkB or AAGFP at MOI 500. After stimulation with tumor necrosis factor-alpha (TNFa) or interleukin-1 (IL-1), luciferase activity was
demonstrated in MSCs transduced with control virus, confirming upregulation of the NF-kB pathway. Conversely, MSCs transduced with AdsrlkB
showed significantly less luciferase activity, indicating successful inhibition of the pathway. The NF-kB pathway was not stimulated by IL-6 in
either group (B). Cytokines were used at a concentration of 100 ng/mL. Data are presented as mean + standard error of the mean of triplicate
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Figure 2 Effect of inflammatory cytokines on osteogenesis of mouse mesenchymal stem cells (MSCs) in vitro. Osteogenesis was
suppressed in a dose-dependent manner by both tumor necrosis factor-alpha (TNFa) and interleukin-1-beta (IL-1(3). This was statistically significant
in (A) BALB/c and (B) FVB MSCs compared with MSCs differentiated in the absence of pro-inflammatory cytokines. MSCs cultured in complete
expansion medium only did not undergo differentiation (negative control). The dose-dependent inhibition of osteogenesis in FVB and BALB/
cMSCs was demonstrated by alizarin red staining (C), and a representative micrograph of alizarin red staining of BALB/c MSCs is also shown (D).
FVB MSCs stimulated to undergo osteogenesis and stained with alizarin red and control FVB MSCs are shown (E). Data shown are mean calcium
per well £ standard error of the mean of triplicate experiments. *P <0.05, **P <0.001 (two-way analysis of variance).

respectively (Figure 2B). However, despite the lower per- MSCs were cultured with 10 ng/mL of either cytokine or
centage decrease in osteogenesis in FVB cells, it is worth  with 1 ng/mL of IL-1f is more than the total calcium de-
noting that the decrease in calcium deposition when FVB  position of control BALB/c MSCs. The suppression of
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Table 1 Absolute decrease in calcium per well of
mesenchymal stem cells undergoing osteogenesis in the
presence of pro-inflammatory cytokines

Decrease in absolute calcium P value

per well, mean pg (SD)

BALB/c FVB
10 ng/mL TNFa 10.72 (0.55) 16.71 (1.47) 0.03°
1 ng/mL TNFa 106 (041) 54 (261) 0.09
0.1 ng/mL TNFa 2.35 (0.54) 4.25 (345) 0.36
10 ng/mL IL-18 11.64 (0.03) 16.52 (4.97) 0.23
1 ng/mL IL-13 11.45 (0.20) 17.88 (1.87) 0.03°
0.1 ng/mL IL-13 5.57 (4.36) 8.16 (4.44) 0.65

The absolute decrease in calcium per well of FVB and BALB/c cells stimulated
to undergo osteogenesis in the presence of pro-inflammatory cytokines. A
decrease in calcium production was demonstrated in all wells with response
by FVB cells statistically greater than that for BALB/c preparations in two
culture conditions. P <0.05. IL-1B, interleukin-1-beta; SD, standard deviation;
TNFaq, tumor necrosis factor-alpha.

BALB/c osteogenesis by TNFa was confirmed by a de-
crease in mineral deposition by alizarin red staining
(Figure 2C). Magnified images of alizarin red stained
BALB/c and FVB MSCs stimulated to undergo osteogen-
esis are also shown (Figure 2D and E).

Adipogenesis was induced in both BALB/c and FVB
MSCs, with BALB/c demonstrating a higher adipogenic
potential with an Oil Red O value of 0.6 at 450 nm. Adi-
pogenesis in BALB/c was reduced by 66% when 10 ng/mL
TNFa was added to the culture medium. A lower concen-
tration of TNFa suppressed adipogenesis only marginally,
4.8% reduction with 1 ng/mL TNFa, while IL-13 at 10 or
1 ng/mL reduced adipogenesis by approximately 25%.
The addition of either cytokine at 0.1 ng/mL had no sig-
nificant effect on BALB/c adipogenesis (Figure 3A). Rep-
resentative images of the suppression of BALB/c MSC
adipogenesis by TNFa and IL-1f are shown in Figure 3C.
FVB MSCs had less adipogenic potential that BALB/c
MSCs, and there was no suppression of this differenti-
ation pathway by either pro-inflammatory cytokine at
any dose (Figure 3B,D).

Cytokine mediated suppression of differentiation was not
mediated by the NF-kB pathway

Differentiation studies were carried out with MSCs
expressing AdsrIkB or with non-transduced MSCs in the
presence of curcumin. The suppression of osteogenesis
in BALB/c and FVB MSCs by 10 ng/mL of either pro-
inflammatory cytokine was not rescued by inhibition of
the NF-«B pathway by either of these methods (Figure 4A,
B). Osteogenesis remained suppressed in terms of calcium
deposition and mineralization (Figure 4C). Similarly, the
suppression of adipogenesis by TNFa and IL-1f in BALB/
¢ MSCs was not affected by interference of the NF-xB
pathway as demonstrated by measurement of Oil Red O
absorption (Figure 5A) and staining (Figure 5B).
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Pro-inflammatory cytokines enhanced migratory capacity
of MSCs in vitro independently of the NF-kB pathway
Both BALB/c and FVB MSCs migrated preferentially
toward FBS-containing medium compared with serum-
free medium (Figure 6A,B). When pre-stimulated with ei-
ther TNFa or IL-1f, migration toward medium supple-
mented with FBS was significantly greater when compared
with non-pre-stimulated control migration toward FBS
(Figure 6A,B). The effect of cytokine pre-stimulation on
migration was greatest in BALB/c MSCs and was not
reversed by suppression of the NF-kB pathway either by
viral transduction with AdsrIkB (Figure 6C) or by the
addition of curcumin to the cultures (Figure 6D). Simi-
larly, inhibition of the NF-«kB pathway had no effect on the
augmentation of FVB migration by pro-inflammatory
cytokines (Additional file 1).

Discussion
The regenerative capacity of MSCs holds great promise
in the development of treatments for autoimmune in-
flammatory disorders characterized by tissue destruction.
We have shown that the genetic background may influ-
ence the ability of MSCs to suppress inflammation in an
allogeneic host: in vitro MSCs from various genetic
backgrounds could suppress secretion of TNFa by acti-
vated DBA/1 T cells, but only syngeneic and partially
mismatched MSCs suppressed IFNy production [19].
Additionally, when comparing the overall effect of MSCs
on the ratio of Thl to Th2 cytokine production, fully
allogeneic BALB/c MSCs were shown to have the least
immunosuppressive effect. In vivo in a CIA model, allo-
geneic MSCs exacerbated disease progression and this
was also evident biochemically with higher levels of IL-
17 and IL-1f detectable in the sera of these mice [19]. A
recent paper using allogeneic MSCs has demonstrated
that MSCs may actually perpetuate inflammation
through alterations in T-cell profiles and upregulation of
Th-17 [44]. When the outcomes in these studies are
considered, so too must be the potent pro-inflammatory
milieu of CIA. CIA is predominantly a Thl-driven dis-
ease with Th2 cytokines present during remission. While
TNFa and IL-1p are key mediators of inflammation, the
role for IFNy in CIA is complex with a peak in early
disease and evidence of a disease-limiting role in late
disease, decreasing IL-17 production and osteoclast pre-
cursors while increasing the activity of T regulatory cells
[45-49]. Furthermore, data in antibody-induced arthritis
in rats and spontaneous severe erosive arthritis in mice
suggest that abrogation of the inflammatory milieu with
a protease inhibitor may facilitate the immunosuppres-
sive properties of MSCs in delivering a clinically appar-
ent amelioration of disease [24].

Both TNFa and IL-1P have been shown to affect the
characteristics of MSCs, and several pathways have been
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Figure 3 Effect of inflammatory cytokines on adipogenesis of mouse mesenchymal stem cells (MSCs) in vitro. Adipogenesis was
suppressed by tumor necrosis factor-alpha (TNFa) and interleukin-1-beta (IL-10) in a dose-dependent manner in (A) BALB/c MSCs compared with
positive control cultures differentiated in the absence of pro-inflammatory cytokines. Negative controls represent MSCs cultured in complete
expansion medium only. A similar trend was seen in (B) FVB MSCs but did not reach statistical significance. The effect of pro-inflammatory
cytokines on BALB/c adipogenesis was also demonstrated by Oil Red O staining (C). A representative image of Oil Red O staining of FVB cells
cultured in adipogenic medium is shown (D). Data shown are mean absorbance of dissolved Oil Red O + standard error of the mean of triplicate
experiments. *P <0.05, **P <0.001 (two-way analysis of variance).

implicated in this. In particular, the NF-kB pathway role of NF-«kB in the migration of murine MSCs [40].
modulates the differentiation and migration of human Here, we have looked at the effects of TNFa and IL-1f,
MSCs [27,37,50], and there are some limited data on the key cytokines in RA and CIA, on the ability of murine
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represent MSCs stimulated to undergo osteogenesis, MSCs transduced with a super-repressor inhibitor of NF-kB (AdsrlkB) before differentiation,
and MSCs differentiated in the presence of curcumin at a concentration of 25 uM (CQ 25). Osteogenesis was suppressed in (A) BALB/c and (B)
FVB MSCs by 10 ng/mL tumor necrosis factor-alpha (TNFa) and interleukin-1-beta (IL-13) compared with controls and was not rescued by MSC
transduction with AdsrlkB or by the addition of curcumin at 10 uM (CQ 10) or 25 pM. The suppression of osteogenesis of BALB/c MSCs,
irrespective of transduction with AdsrlkB, was also demonstrated by alizarin red staining (C). Data shown are mean calcium per well + standard
error of the mean of triplicate experiments. *P <0.05, **P <0.001 (two-way analysis of variance).

MSCs to differentiate and migrate in vitro. It has been
clearly demonstrated that both BALB/c and FVB MSCs
have less osteogenic and adipogenic potential in the
presence of pro-inflammatory cytokines. FVB MSCs

were shown to have a greater osteogenic potential than
BALB/c MSCs when cultured under the same condi-
tions; however, both had a similar absolute reduction in
calcium deposition when co-cultured with inflammatory
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Figure 5 Tumor necrosis factor-alpha (TNFa)-mediated suppression of adipogenesis was not reversed by modulation of the nuclear
factor-kappa-B (NF-kB) pathway. Negative controls consisted of mesenchymal stem cells (MSCs) cultured in complete expansion medium.
Positive controls represent MSCs stimulated to undergo adipogenesis, MSCs transduced with AdsrlkB before differentiation (AdsrlkB), and MSCs
differentiated in the presence of curcumin at a concentration of 25 uM (CQ 25). The suppression of adipogenesis by TNFa was statistically
significant in (A) BALB/c MSCs compared with controls. Transduction of MSCs with AdsrlkB or addition of curcumin at 10 uM or 25 pM to culture
medium (CQ 10, CQ 25) had no effect on differentiation and did not reverse the effect of TNFa. The reduction of adipogenesis in BALB/c MSCs
by TNFa and the lack of effect of inhibition of the NF-kB pathway were also demonstrated by Oil Red O staining (B). Data shown are mean
absorbance of extracted Oil Red O + standard error of the mean of triplicate experiments. *P <0.05 (two-way analysis of variance).

cytokines. In the case of adipogenesis, BALB/c MSCs
consistently demonstrated a higher adipogenic capacity
than FVB MSCs and were more sensitive to cytokine ex-
posure, with an almost threefold reduction in lipid vacu-
ole formation when incubated with higher doses of
TNFa. Pro-inflammatory cytokines had no significant ef-
fect on FVB MSC adipogenesis, nor did they influence
the osteogenesis or adipogenesis of MSCs isolated from
DBA/1 mice (results not shown).

Both BALB/c and FVB MSCs migrated preferentially
toward medium containing FBS in vitro, compared with
serum-free medium, with a higher migratory capacity
consistently demonstrated in FVB cultures. This migra-
tion was augmented by pre-stimulation with TNFa and
IL-1pB at relatively high doses in both cell types. The
magnitude of this effect was similar in both cell types,
with an approximately 1.5-fold increase in the number
of cells migrating.

Owing to the central role of NF-kB in the perpetuation
of immune activation in arthritis and its importance in

the response of human MSCs to inflammation, it was
hypothesized that this pathway was likely to be involved
in the response of murine MSCs to pro-inflammatory
cytokines. Curcumin is derived from turmeric and has
been shown to inhibit NF-kB as well as downregulat-
ing cyclooxygenase-2, nitric oxide synthase, and matrix
metalloproteinase-9 [51]. It has also been reported that
curcumin can promote osteogenesis and inhibit adipo-
genesis in rat MSCs, although the mechanism for this is
unclear [52]. A pathway of particular interest is the p38
MAPK pathway, and it has been demonstrated that alter-
ations in differentiation potential of human MSCs by
modification of the actin cytoskeleton are associated with
changes in the levels of phosphorylated p38 MAPK [53].
As well as a possible role in actin binding, p38 MAPK ac-
tivity may affect bone morphogenetic protein (BMP)-reg-
ulated osteogenesis [54,55]. Indeed, addition of curcumin
may mediate some of its effect through the p38 MAPK
pathway. The use of curcumin has been demonstrated to
stimulate this pathway in some situations [56] whereas in
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Figure 6 Pre-stimulation (PS) with pro-inflammatory cytokines increased migration of murine mesenchymal stem cells (MSCs) toward
fetal bovine serum (FBS) in vitro independently of the nuclear factor-kappa-B (NF-kB) pathway. In BALB/c (A) and FVB (B) MSCs, a
significant increase in migration toward 10% FBS was demonstrated compared with serum-free medium controls. PS of BALB/c and FVB MSCs
with 50 ng/mL of tumor necrosis factor-alpha (TNFa) or interleukin-1-beta (IL-1B) for 24 hours increased migration of MSCs toward FBS medium
compared with non-PS MSCs. Transduction of MSCs with AdsrlkB did not reverse the effect of pre-stimulation (C). Similarly, addition of 25 uM
curcumin did not reverse the effect of pre-stimulation with TNFa (D). Data shown are the mean + standard error of the mean of triplicate
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others it may act through p38 inhibition [57]. One such
study demonstrated that curcumin inhibited both NF-«B
and MAPK pathways in TNFa-treated HaCaT cells, sug-
gesting that the local inflammatory environment may
affect the mode of action [58]. However, successful dis-
ruption of the NF-«B pathway with the super-repressor
IxB was also insufficient to rescue either the differenti-
ation or migratory capacity of either BALB/c or FVB
MSCs in this study, confirming that this pathway is un-
likely to be responsible for the effects seen.

Recently published in vivo data demonstrate that the in-
flammatory milieu interferes with the ability of MSCs to
suppress the immune system and that this may be rescued
by the use of protease inhibitors [24]. Here, we have dem-
onstrated that pro-inflammatory cytokines found in in-
flammatory arthritis have the ability to affect some of the
fundamental characteristics of MSCs, differentiation and
migration, and furthermore that this effect is not consist-
ent across genetic backgrounds. In contrast to the data
on human MSCs, this phenomenon is not mediated by
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the NF-«B pathway. In light of this, other pathways such
as MAPK and P13K will need to be looked at.

Interestingly, in contrast to the response to TNFa or
IL-1B, stimulation of MSCs with IL-6 did not activate
the NF-kB pathway in mouse MSCs as demonstrated
with the NF-«kB-driven luciferase. It has been suggested
that IL-6 can increase migration of human MSCs
in vitro and has important effects on rat MSC prolifera-
tion, migration, and differentiation mediated by STAT3
signaling pathways [59,60]. Therefore, the role of IL-6 in
mediating mouse MSCs in inflammation may be import-
ant and warrants further investigation.

Conclusions
A large body of literature continues to focus on the
therapeutic potential of MSCs in inflammatory and neo-
plastic disease processes, and the role of the NF-kB
pathway continues to be studied. In the involvement of
human MSCs in the pathogenesis of bowel cancer, it has
been reported that  catenin in MSCs regulates NF-xB
activity via members of the TNF receptor super family.
De-regulated catenin activity in MSCs may contribute to
the development of colorectal tumors, particularly in pa-
tients with inflammatory bowel disease [61]; given the
effects of MSC differentiation in vivo, it is thought that
human MSC osteogenesis is an important step in the de-
velopment of vascular calcification. Studies report that
the NF-kB pathway is central to complement receptor-
mediated MSC osteogenesis and that modification of
this may have a functional impact on vascular calci-
fication [62]. This may be of particular importance in
chronic inflammatory diseases, such as rheumatoid arth-
ritis, which are associated with an increased risk of
cardiovascular disease [63]. Furthermore, the NF-kB
pathway has been implicated in enhanced migration and
adhesion of human MSCs after exposure to TNFa [64].
These data all relate to the role of NF-«B signaling in
relation to human MSCs. Therefore, we must consider
the fact that murine studies of inflammatory conditions
and MSCs reported in the literature may not predict what
will be observed with human MSCs based on their respon-
siveness to NF-kB. It is clear that caution is required in
the interpretation of in vivo studies of murine MSCs not
only in CIA but in any condition where the inflammatory
milieu may have unrecognized effects on MSC function
and where the effect of cytokine networks on the cell
may be related in part to the cells’ genetic background.

Additional file

Additional file 1: Migration of FVB mesenchymal stem cells (MSCs)
in vitro. Migration of FVB MSCs was augmented by pre-stimulation with
tumor necrosis factor-alpha (TNFa). This effect was not reversed by
inhibition of the nuclear factor-kappa-B (NF-kB) pathway.
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