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Abstract

Introduction: Preterm newborns often require mechanical respiratory support that can result in ventilation-induced
lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung
inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant
is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after

combination with surfactant.

to PBS or surfactant, and SP-A expression was equivalent.

Methods: hAECs were incubated in surfactant (Curosurf) or phosphate-buffered saline (PBS) for 30 minutes at 37°C.
Cell viability, phenotype (by flow cytometry), inhibition of T-cell proliferative responses and differentiation into lung
epithelium-like cells (assessed with immunohistochemical staining of surfactant protein (SP)-A) were investigated.

Results: Cell viability and apoptosis of hAECs were not altered by surfactant, and hAEC phenotype was not altered.
hAECs maintained expression of epithelial cell adhesion molecule (EpCAM) and human leukocyte antigen (HLA)-ABC
after surfactant exposure. Expression of HLA-DR, CD80 and CD86 was not increased. Immunosuppression of T cells by
hAECs was not altered by surfactant. hAEC differentiation into lung epithelium-like cells was equivalent after exposure

Conclusion: Surfactant exposure does not alter viability or function of hAECs. Thus a combination therapy of hAECs
and surfactant may be an efficacious therapy to ameliorate or prevent preterm lung disease.

Introduction
Infants born preterm (before 37 completed weeks of gesta-
tion) lack pulmonary surfactant; a lipoprotein complex
produced by type II alveolar epithelial cells [1] that reduces
surface tension at the air-to-fluid interface. More than half
of neonates born sooner than 28 weeks’ gestation require
mechanical ventilation for sufficient gas exchange [2],
which can cause ventilation-induced lung injury (VILI)
and contribute to life-threatening bronchopulmonary
dysplasia (BPD). Administration of exogenous surfactant
(purified from animals and composed of phospholipids
and some of the proteins contained in the original mater-
ial) to preterm infants improves their respiratory status
but does not prevent BPD [3]. Treatment of ventilated
lambs with exogenous surfactant reduces inflammation
[4], but it does not prevent VILI [3].

Cell therapy presents an attractive option for treat-
ment of VILI and BPD. We recently demonstrated the
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capacity of human amnion epithelial cells (hAECs) to
prevent VILI and the BPD phenotype in experimental
animal models [5-8].

hAECs compose the inner surface of the amnion [9,10],
and are able to differentiate into cell types of all three germ
layers [11,12], including neuronal cells, smooth muscle,
cardiomyocytes, osteocytes, adipocytes, hepatocytes, and
pancreatic cells [10,11]. hAECs can be induced to differen-
tiate into lung epithelium-like cells in vitro [13]. Unlike
other pluripotent cells, such as embryonic stem cells,
hAECs do not form teratomas [10].

Exogenous surfactant is a potential vehicle for the
administration of hAECs to preterm neonates. Therefore,
we aimed to determine whether surfactant exposure, at a
concentration administered clinically, altered hAEC via-
bility, phenotype, and function. We hypothesized that
surfactant exposure would not be detrimental to hAECs,
thereby demonstrating the potential for a novel combin-
ation therapy for VILL
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Methods
Isolation of hAECs and surfactant treatment
All experiments were performed with approval from the
Monash University Human Ethics Committee. Human
AECs were isolated as previously described [14]. In brief,
placentae were obtained from women with uncompli-
cated pregnancies undergoing elective caesarean section
at term. Women gave written, informed consent for the
collection of their placentae. The amnion was manually
stripped from the chorion, and the hAECs enzymatically
removed from the amnion by two, 1-hour digestions in
Trypzean (Sigma-Aldrich, Sydney, Australia). Trypzean
was inactivated by Soybean trypsin inhibitor (Sigma-
Aldrich), and the hAECs collected by centrifugation.
Live-cell counts and viability were determined by trypan
blue exclusion. For cryopreservation, hAECs were frozen
at a density of 5x 10° cells/ml; media consisted of 90%
fetal bovine serum (FBS; Gibco, Life Technologies) and
10% dimethyl sulfoxide (DMSO; Sigma Aldrich). Cells
were then transferred to freezer tubes and left in a freez-
ing container (MrFrosty, Thermo Fisher Scientific) over-
night at —-80°C, after which they were transferred to
liquid nitrogen. To thaw, hAEC sample tubes were
quickly removed from liquid nitrogen and placed dir-
ectly into a 37°C water-bath until thawed. Samples
were washed to remove DMSO, and cell counts and
viability were determined. Approximately 15 x 10° hAECs
in 1 ml phosphate-buffered saline (PBS) were exposed
to either 1 ml of surfactant (Curosurf, kindly provided
by Chiesi Pharmaceuticals, Italy) or PBS for 30 minutes
in a 37°C water-bath. We considered that this period of
incubation would be realistic in a clinical setting if hRAECs
were to be administered in surfactant.

After incubation, cells were washed with PBS and viabil-
ity was again determined by using trypan blue exclusion.

Flow cytometry

Phenotypic analysis was performed on hAECs after sur-
factant or PBS exposure alone. Single-color flow cytome-
try was performed by staining 5 x 10° cells with primary
antibody for 20 minutes at 4°C. The relevant isotype
control antibody was used as a negative control. Cells
were then washed with FACS buffer (1% FBS in PBS)
and underwent centrifugation at 300 rcf for 5 minutes at
4°C. Data acquisition was performed by using a FACS-
Canto II flow cytometer, and data were analyzed by
using Flowlogic Software (Inivai Technologies, Mentone,
VIC, Australia). All primary antibodies were purchased
from BD Biosciences, Australia.

Proliferation assays

Proliferation assays were performed as previously described
[15]. In brief, splenocytes were isolated from C57BL/6 adult
mice or fetal sheep and seeded in 96-well, flat-bottom
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microtiter plates (Nunc, Thermo Fisher Scientific, Australia).
Assays were performed in triplicate at a concentration of
2.5 x 10 cells per well in complete RPMI medium alone
or in the presence of 5 pl/ml concanavalin A (ConA;
Sigma-Aldrich), or into wells precoated with 10 pg/ml
anti-CD3 (clone 145-2C11) and 10 pg/ml anti-CD28
(clone 37.51) antibodies (both from BD Biosciences) to a
final volume of 200 pl per well. For wells that required
addition of hAECs, 50 ul of hAECs that had been exposed
to surfactant or PBS, at hAEC-to-splenocyte ratios ranging
from 1:5 to 1:40, were added to each well before the
addition of splenocytes. Cells were incubated at 37°C for
48 hours and then 1 pCi/well [*H]-thymidine (Perkin
Elmer, Waltham, MA, USA) was added for an additional
18 hours of culture. Cells were harvested onto filter mats
(Perkin Elmer), and incorporated radioactive nucleic acids
were counted by using a Top Count Harvester (Packard
Biosciences, Meriden, CT, USA).

Wound-healing assay

A scratch assay was used to assess the wound-healing
properties of hAECs. After surfactant or PBS treatment,
hAECs were plated into six-well plates at a density of
20,000 cells/cm® and cultured in standard DMEM/F12
medium supplemented with 10% FBS (Gibco, Life Tech-
nologies). Cells were left until they became 100% conflu-
ent (approximately 10 to 12 days), and then a cross was
scratched in the middle of the well by using a 1,000-pl
pipette tip. Images were taken by using a phase-contrast
microscope at the corner of the cross, so the exact pos-
ition could be replicated. Cells were assessed and images
were captured at 0 and 72 hours by using an Olympus
CKZ41 inverted microscope (Olympus): the scratched
area was quantified by using Image] (NIH [16]).

Differentiation of hAECs to alveolar type Il cells

After surfactant or PBS treatment, hAECs were plated
into six-well plates containing 22-mm glass coverslips
(Menzel-Glaser, Germany), at a density of 20,000 cells/cm?.
hAECs were cultured in either Small Airway Epithelial
Growth Medium (SAGM; Lonza Australia Pty Ltd,
Australia) or DMEM/F12 with 10% FBS for up to 28 days
without passage. For Surfactant Protein A (SP-A) immu-
nostaining, hAECs were fixed in 4% paraformaldehyde in
PBS for 15 minutes and permeabilized with 0.1% Triton-
X-100 in PBS for 5 minutes at room temperature. DAKO
Protein Block Serum-Free was used to block nonspecific
binding (10 minutes at room temperature).

Cells were incubated overnight at 4°C in anti-SP-A anti-
body (Millipore). Alexa Fluor 488 goat anti-mouse IgG
(Life Technologies) was used as a secondary antibody and
was incubated for 1 hour at room temperature. Cells were
counterstained with Hoechst (Invitrogen, Australia) for
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10 minutes at room temperature. Imaging was performed
by using a Nikon C1 laser scanning microscope.

Statistical analysis

Results are expressed as mean * standard error of the
mean (SEM). Statistical analysis was performed with
Prism 5.03 (GraphPad Software). Experimental and con-
trol groups were compared with paired or unpaired ¢
test, or one-way ANOVA (with Bonferroni post hoc
analysis), where appropriate. A value of P<0.05 was
considered statistically significant.

Results

Cell viability after surfactant treatment

No difference was observed in hAEC viability (from six
donors) after either surfactant or PBS exposure (Figure 1A).
The proportions of apoptotic or necrotic cells were not
different between hAECs exposed to PBS (Figure 1B) or to
surfactant (Figure 1C).

Expression of hAEC cell-surface markers after surfactant
treatment

Expression of epithelial cell adhesion molecule (EpCAM)
was high on hAECs (isolated from three donors) and not
reduced by surfactant (72% + 4% and 70% + 5% for PBS-
and surfactant-exposed, respectively). All hAEC samples
had high levels (>50%) of human leukocyte antigen
(HLA)-ABC and, after surfactant exposure, cells from
two of the three donors reduced expression to less than
15% (expression in the other donor was unchanged).
hAECs were negative for HLA-DR and co-stimulatory
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markers CD80 and CD86, and had negligible expression
of CD90, CD44, and CXCR4, regardless of surfactant
exposure (Table 1).

Effect of surfactant treatment on immunosuppressive
properties of hAECs

Sheep splenocyte proliferation in response to Con A
(Figure 2A) was significantly reduced by hAECs (P < 0.05,
P <0.01, respectively), but inhibition was greater for hAECs
exposed to surfactant (P <0.035). Mouse splenocyte
proliferative responses were significantly reduced by
hAECs alone or by surfactant-exposed hAECs (Figure 2B;
P <0.001).

Effect of surfactant treatment on the wound-healing
properties of hAECs

Wound area was reduced 18.2% + 3.6% and 21.7% + 1.1% for
hAECs exposed to PBS or surfactant, respectively (Figure 3A):
this difference was not statistically significant.

Effect of surfactant treatment on the alveolar cell
differentiation potential of hAECs

hAECs exposed to either PBS (Figure 4A) or surfactant
(Figure 4B) readily differentiated to type II alveolar epithelium-
like cells, as demonstrated by SP-A expression. hAECs
cultured in control medium did not express SP-A, regard-
less of treatment (Figure 4C).

Discussion

Cell therapy is rapidly nearing translation into treatment to
improve lung development and prevent the progression
to BPD in preterm infants who require invasive respira-
tory support. Combination therapy with prophylactic
surfactant is a logical combination. We have shown that
exposure of hAECs to surfactant has no detrimental
impact on cell viability, phenotype, or function. More-
over, hAECs retained their ability to suppress nonspecific

Table 1 Expression of hAEC surface markers after
surfactant treatment
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Figure 1 Surfactant treatment does not reduce hAEC viability.
(A) Cell viability of hAECs incubated with either PBS or surfactant
(n=06). (B) Representative flow-cytometry plot assessing proportions
of apoptotic and necrotic hAECs after PBS exposure. (C) Representative
flow-cytometry plot assessing proportions of apoptotic and necrotic
hAECs after surfactant exposure.

hAEC

Surface hAEC + surfactant

marker

EpCAM ++ ++ ++ ++ ++ ++
HLA-ABC ++ ++ ++ + ++ +
HLA-DR - - - - _ _
CD80 - - - - - R
CD86 - - - - - R
CD90 - - - ¥ . _
CD44 - - - - - +
CD184 (CXCR4) + - - - - R

Cell-surface expression as assessed with flow cytometry. —, not detected;
+, low (5% to 15%); ++, high (>50%).
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Figure 2 hAECs retain immunosuppressive properties after
surfactant treatment. (A) Sheep T cells were stimulated with Con
A alone or after coculture with hAECs after treatment with PBS

or surfactant (n =9, performed in triplicate; *P < 0.05 **P < 0.01).

(B) Mouse T cells were stimulated with anti-CD3/anti-CD alone or
after coculture with hAECs after treatment with PBS or surfactant
(n=9, performed in triplicate. ***P < 0.001.

and T-cell receptor-specific immune responses, and surfactant-
exposed hAECs were able to differentiate into type II-like
alveolar epithelial cells in vitro.

Inflammation and immune cell activation appear critical
for the development of lung injury during mechanical
ventilation, which induces epithelial cell damage, protein
leak, and neutrophil migration into the lung, as well as
elevated gene expression of inflammatory cytokines inter-
leukin (IL)-1p, IL-6, and serum amyloid A3 in lung tissue
[17-19]. Animal studies have shown that cell therapy
with hAECs decreased lung injury and inflammation in
hyperoxia-exposed mice [20] and in a bleomycin model of
fibrotic lung injury [7]. We have shown that hAECs ex-
posed to surfactant, at concentrations used clinically, does
not reduce the ability of the cells to suppress T-cell im-
mune responses and therefore would be unlikely to reduce
their in vivo immunomodulation capacity.

Immunomodulation is an important aspect of the
action of hAECs [21,22]. hAECs are able to modulate
lung inflammation through polarization of macrophages
toward a reparative M2 phenotype [23]. Furthermore,
hAECs reduce proliferation and the production of in-
flammatory cytokines in T-cell cocultures [24,25], and
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our studies have shown that hAECs exposed to surfactant
still retain the ability to suppress T-cell responses.

Another important property of hAECs is their ability
to differentiate into type II alveolar cells in vitro [14]
and in vivo [6,8]. Type II alveolar cells are the sites of
production, secretion, and recycling of surfactant [1,26].
The preterm lungs do not produce sufficient surfactant
to maintain lung integrity; thus the ability of exogenously
administered cells to differentiate into functional surfactant-
producing cells may be beneficial. In ventilated preterm
lambs, carboxyfluorescein succinimidyl ester (CFSE)-labeled
hAECs administered intratracheally engrafted in small
numbers and differentiated into alveolar type II cells, as
evidenced by the expression of pro-surfactant-C [8]. Our
study demonstrates that hAECs can differentiate into
type II alveolar epithelial cells and that exposure to sur-
factant does not inhibit the ability of hAECs to undergo
differentiation.

Although engraftment and differentiation of hAECs may
occur in vivo, it has recently become evident that significant
cell engraftment does not normally occur in experimental
lung injury [27]. It is more likely that hAECs act through
paracrine effects and may also recruit endogenous stem
cells to replace damaged tissue [28]. Recently, by using a
hyperoxic rodent model of BPD, it was shown that mesen-
chymal stem cells (MSCs) were able to reduce lung injury,
in part, through activation and recruitment of endogenous
bronchoalveolar stem cells to the site of injury [29]. Al-
though this phenomenon in the lung has not been investi-
gated after hRAEC administration, hAECs can promote host
repair in a monkey model of spinal cord injury [30], poten-
tially through the recruitment of neural precursor cells.

hAECs are generally classified on the basis of their
epithelium-like morphology and expression of EpCAM
[14]. In this study, we verified that hAECs exposed to
surfactant retained their epithelial morphology and the
expression of EpCAM. hAECs are generally regarded as
immunoprivileged cells that are negative for HLA class II
and co-stimulatory molecules, and have limited alloim-
mune responses. Flow-cytometric analysis revealed that
hAECs exposed to surfactant did not upregulate any co-
stimulatory markers (HLA-DR, CD80, CD86), suggesting
that they retain their immunoprivileged properties.

Allografts of AECs in mice corneas produced delayed
hypersensitivity to donor tissue 2 weeks after engraftment,
but not after 4 or 8 weeks [31]. This implies that memory
responses against the allograft are not produced despite
initial sensitization. It has been proposed that this lack of
hypersensitivity to allografts of hAECs is due to lack of
HLA class II and co-stimulatory molecule expression and
limited expression of HLA class I [32]. Unlike other stud-
ies, our results suggest that untreated hAECs indeed express
HLA class I antigens, and this was not further upregulated
by surfactant exposure.
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Figure 3 Surfactant treatment does not affect wound healing and migration. Cellular migration was measured by using a scratch-wound
assay with hAECs treated with PBS or surfactant. (A) Percentage change in the wound area for hAECs exposed to PBS or surfactant (n=3).
(B) Representative image of PBS-treated hAECs at 0 hours and (C) 72 hours. (D) Representative image of surfactant-treated hAECs at

0 hours and (E) 72 hours.

Figure 4 Surfactant-treated hAECs retain the ability to differentiate into type Il alveolar cells. (A) PBS-treated hAECs cultured in SAGM
for 28 days. (B) Surfactant-treated hAECs cultured in SAGM for 28 days. (C) hAECs cultured in control media (DMEM/F12) for 28 days. Red stain
denotes expression of surfactant protein-A, and Hoechst (blue) staining was used to label cell nucleus (n = 3, performed in duplicate for all conditions).
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We also investigated expression of CD90, CD44, and
CD184. CD90 and CD44 are predominantly used as
markers of MSCs; however, it has been shown that CD90
is upregulated on hAECs after prolonged time in culture
[33]. We found hAECs were negative for both CD90 and
CD44, and expression was not altered by surfactant expos-
ure. CD184 (also known as CXCR4) is an important che-
mokine receptor that can be upregulated on MSCs [34]
and plays a role in the homing of cells to areas of brain in-
jury [35,36]. The expression of CD184 has not been stud-
ied on hAECs previously; our results suggest that hAECs
do not express CD184 on their surface and do not upregu-
late this receptor after surfactant exposure.

Conclusion

Human amnion epithelial cells (hAECs) are viable, and
their function is preserved, in pulmonary surfactant.
Administration of hAECs in exogenous surfactant is a
realistic treatment strategy for neonatal respiratory disease.
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