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Abstract

Introduction: Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in
patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential
for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs

stress, inflammation, collagen deposition, and fibrosis.

structure after reversal of experimental RVH.

during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH.

Methods: Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without
adjunct intra-renal delivery of MSC (1016 cells), and controls. Cardiac structure, function (fast-computed tomography
(CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed
in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and
systemic blood levels of inflammatory markers were measured and their renal release calculated.

Results: PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and
RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas
myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in
RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory
cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative

Conclusions: Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative
stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after
revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and

Introduction

Renovascular hypertension (RVH) is a manifestation of
atherosclerotic renovascular disease, which is associated
with progressive renal dysfunction and increased cardio-
vascular morbidity and mortality [1]. Among hyperten-
sive patients undergoing echocardiography, cardiac
structure and diastolic function are more compromised
in RVH than in essential hypertensive patients, and its

* Correspondence: lerman.lilach@mayo.edu

'Department of Internal Medicine, Division of Nephrology and Hypertension,
Mayo Clinic, Rochester, MN, USA

3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA

Full list of author information is available at the end of the article

( BiolMed Central

coexistence with significant renal failure further aggra-
vates cardiac structural and functional abnormalities [2].

Restoring blood flow to the kidney by percutaneous
transluminal renal angioplasty (PTRA) has become a
common approach among interventional cardiologists
and radiologists [3]. However, the Cardiovascular Out-
comes in Renal Atherosclerotic Lesions (CORAL) trial
recently demonstrated that PTRA does not confer any
additional benefit over medical therapy with respect to
the prevention of hospitalization or death from myocar-
dial infarction, congestive heart failure and other cardio-
vascular causes [4]. In agreement, we have shown in
porcine RVH that treatment with PTRA alone normal-
izes blood pressure without substantial improvement of
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cardiac diastolic function [5], warranting the need for
adjunctive therapies to preserve the RVH myocardium.

Among insults responsible for persistent myocardial
injury after reversal of hypertension are inflammation
and oxidative stress, which might mediate the crosstalk
between the kidney and heart. We have previously
shown in porcine RVH increased stenotic-kidney release
of isoprostanes [6], which are potent coronary vasocon-
strictors [7]. Furthermore, we have demonstrated that
post-stenotic porcine and human kidneys release several
inflammatory cytokines [8,9] that may accelerate target
organ injury. Importantly, despite successful restoration
of vessel patency with PTRA, inflammatory cytokines
and oxidative stress markers remain elevated and
glomerular filtration rate (GFR) fails to recover in both
porcine and human RVH [10,11], underscoring the need
for strategies tailored to ameliorate inflammation and
oxidative stress.

Mesenchymal stem cells (MSC) are undifferentiated
nonembryonic stem cells with the ability to migrate and
transdifferentiate into distinct phenotypes. These cells
can be isolated from many tissues including adipose tis-
sue and possess potent immunomodulatory properties
via their paracrine anti-inflammatory actions [12]. Accu-
mulating evidence suggests that MSC can directly con-
tribute to both renal and cardiac repair [13]. For
example, in a rat model of ischemic heart failure, a sin-
gle intramyocardial injection of bone marrow-derived
MSC decreases infarct area and preserves the left
ventricle (LV) ability to contract during ischemia [14].
Likewise, intramyocardial administration of adipose
tissue-derived MSC improves functional capacity in rats
with myocardial infarction [15], supporting the value of
this approach to preserve cardiac function.

Our group has previously demonstrated that a single
intrarenal delivery of autologous MSC restores post-
stenotic kidney structure and function in non-
revascularized RVH pigs [8,16]. Furthermore, intra-renal
delivery of allogeneic MSC in conjunction with PTRA
restored renal function and decreased stenotic-kidney
inflammation, oxidative stress and fibrosis in porcine
RVH [17,18]. However, a key question is whether this
approach is capable of indirectly blunting cardiac injury
and dysfunction after reversal of RVH. This study tested
the hypothesis that replenishment of MSC as an adjunct
to PTRA would attenuate systemic oxidative stress and
inflammation, improving cardiac function and oxygen-
ation, and decreasing myocardial injury in porcine RVH.

Methods

With the approval of the Mayo Clinic Animal Care and
Use Committee, 28 domestic female pigs were studied
after 16 weeks of observation. At baseline, 7 animals
started a normal diet (regular pig chow) and the other 21
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a 2%-cholesterol/15%-lard diet (TD-93296, Harlan-Teklad,
Madison, W1, USA) to induce atherosclerosis [19].

Six weeks later, animals were anesthetized with 0.25 g
of intramuscular tiletamine hydrochloride/zolazepam
hydrochloride (Telazol’, Animal Health, Fort Dodge, IA,
USA) and 0.5 g of xylazine, and anesthesia maintained with
0.2 mg/kg/minute of intravenous ketamine and 0.03 mg/
kg/min of xylazine. Animals on the normal diet underwent
a sham procedure, while in the other 21 RVH was induced
by placing a local-irritant coil in the main renal artery
using fluoroscopy, as previously described [20]. In addition,
a telemetry system (Data Sciences International, St. Paul,
MN, USA) was implanted in the left femoral artery to
obtain daily records of mean arterial pressure (MAP) for
the 10 following weeks [21,22].

Six weeks after induction of RVH, renal angiography
was performed in all animals to assess the degree of
stenosis. Seven normal and seven RVH pigs underwent a
sham procedure, whereas the other fourteen were
treated with PTRA with or without a single intra-renal
infusion of allogeneic MSC. PTRA was performed under
fluoroscopic guidance by inflating a 7 mm balloon cath-
eter wrapped with a tantalum stent to 8 atm pressure in
the proximal-middle section of the renal artery. Then,
the balloon was deflated and removed, leading to full
restoration of luminal patency [23,24].

Four weeks after PTRA, pigs were similarly anesthe-
tized and renal angiography repeated. Single-kidney
GFR, renal blood flow (RBF), and cardiac function were
assessed using multi-detector computer tomography
(MDCT), while myocardial oxygenation was evaluated
by blood oxygen level-dependent magnetic resonance
imaging (BOLD-MRI). Inferior vena cava (IVC) samples
were collected for isoprostane levels (enzyme immuno-
assay kit), plasma renin activity (PRA, GammaCoat PRA
kit; DiaSorin, Inc., Stillwater, MN, USA), cholesterol
panels and creatinine. IVC and stenotic-kidney renal
vein (RV) levels of interleukin (IL)1a, IL1(receptor)rq,
IL1B, IL10, e-selectin, and endothelin (ET)-1 were mea-
sured by luminex (Millipore, Billerica, MA, USA), and their
gradient (RV-IVC) and net renal release (gradientxRBF)
calculated [8,9].

After a three-day recovery period, animals were eutha-
nized with a lethal dose of intravenous sodium pentobar-
bital (100 mg/kg, Fatal Plus, Vortech Pharmaceuticals,
Dearborn, MI, USA). The heart was removed, a segment
of the LV prepared for micro-CT studies, and the
remaining LV tissue was frozen in liquid nitrogen at
—-80°C or preserved in formalin for in vitro studies.

Renal function

Stenotic-kidney RBF and GFR were measured using
MDCT (Somatom Definition-64, Siemens Medical Solution,
Forchheim, Germany), as previously described [25,26].
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Briefly, multiple consecutive scans were performed follow-
ing a central venous injection of iopamidol (0.5 mL/kg per
2 seconds), and images reconstructed and displayed with
the Analyze™ software package (Biomedical Imaging
Resource, Mayo Clinic, Rochester, MN, USA). Data were
analyzed by selecting regions of interest from cross-
sectional images from the aorta, renal cortex, and medulla,
which generates tissue attenuation curves [27]. RBF was cal-
culated as the sum of the products of cortical and medullary
perfusions and corresponding volumes, whereas GFR was
assessed from the cortical curve using the slope of the prox-
imal tubular curve.

Cardiac function and oxygenation

Cardiac systolic and diastolic functions and LV muscle
mass (LVMM) were measured using MDCT, as previ-
ously described [22,28]. Images were analyzed with
Analyze™. In brief, Early (E) and late (A) LV filling rate
were measured from the positive slopes of volume/time
curves and E/A ratio calculated using MATLAB® (Math-
Work, Natick, MA, USA) [29,30]. Myocardial perfusion
was calculated from time-attenuation curves obtained from
the anterior cardiac wall before and during a five-minute
intravenous infusion of adenosine (400 pg/kg/minute) [31].
Myocardial oxygenation was assessed using BOLD-MRI on
a 3 T, Signa EchoSpeed (GE Medical Systems, Milwaukee,
WI, USA) scanner, as previously described [5]. For MR],
animals were anesthetized with 1% to 2% isoflurane and
scans performed during suspended respiration before and
after 400 pg/kg/minute of intravenous adenosine. The
relaxivity index R2*, which inversely correlates with tissue
oxygenation, was calculated in each voxel by fitting the MR
signal intensity versus echo times to a single exponential
function. For data analysis, regions of interest were traced
in the septum in each slice and images analyzed using
MATLAB 7.10 (MathWorks), as previously described [32].

MSC isolation, characterization, function, delivery and
tracking

Porcine omental abdominal adipose tissue (5 to 10 g) was
collected and allogeneic MSC isolated using a standard
protocol [33]. In brief, cells were digested in collagenase-H
for 45 minutes, filtered and cultured in endothelial cell
growth media-2 for three weeks in 37°/5% CO2, and the
third passage preserved in Gibco Cell Culture Freezing
Medium (Life Technologies, Grand Island, NY, USA) at
-80°C until transplantation. MSC were characterized by im-
munostaining and fluorescence-activated cell sorting ana-
lysis to determine cellular phenotype for the MSC markers
CD44 (1:100; abcam, Cambridge, MA, USA) and CD90
(1:100; BD Pharmigen, San Jose, CA, USA). MSC
characterization was confirmed by their trans-differentiation
into osteocytes (mouse anti-human osteocalcin antibody
and alizarin red staining), chondrocytes (goat anti-human
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aggrecan antibody) and adipocytes (goat anti-mouse FABP-
4 antibody and oil red staining) (R&D Systems, Pittsburgh,
PA, USA) [17].

MSC function was also tested [34,35] in a different batch
of MSC (isolated from three pigs) of the same passage,
which had also been previously frozen for several weeks,
thawed and recovered for 24 hours. MSC proliferative
activity was determined in a plate reader at 490 nm by
MTS assay (CellTiter 96 Non-Radioactive Cell Prolifera-
tion Assay; Promega, Madison, WI, USA), as previously
described [35]. MSC migratory capacity was tested using a
QCMTM Haptotaxis cell migration kit (Millipore) and
read at 562 nm [34]. Finally, tube formation assay (BD Bio-
sciences, Bedford, MA, USA) was performed to assess the
ability of MSC to incorporate into vascular structures
formed by human umbilical vein endothelial cells (HUVEC)
in matrigel. MSC (1 x 10%) pre-labeled with Dil (Molecular
Probes, Grand Island, NY, USA) were mixed and plated
together with HUVEC (PromoCell, Heidelberg, Germany)
(4 x 10%. Tube length and number were counted in ran-
dom 20X fields and measured using ZEN°®, 2012 blue
edition (Carl ZEISS SMT, Oberkochen, Germany).

MSC were labeled with a fluorescent membrane dye
(CM-Dil) and kept in 10 ml PBS (10° cells/mL), and
injected immediately after PTRA slowly through a balloon
placed in the renal artery proximal to the stenosis. Four
weeks after delivery, labeled MSC were tracked in frozen
LV sections stained with 4',6-diamidino-2-phenylindole
(DAPI) nuclear stain and in stenotic-kidney sections
stained with DAPI and the tubular marker cytokeratin
(AbD Serotec, Raleigh, NC, USA). Stenotic-kidney and
myocardium MSC retention rate (percentage of injected
cells that remained in the organ) was calculated, as previ-
ously described [10,17].

Microvascular remodeling

Myocardial microvascular architecture was assessed
using a micro-CT scanner. The proximal left anterior
descending artery was cannulated and perfused under
physiological pressure with an intravascular contrast
agent (MV-122, Flow Tech, Carver, MA, USA). A trans-
mural section of the LV (2 cm?®) was scanned and spatial
density of small (<200 um), medium (200 to 300 pm)
and large (>300 pm) microvessels in the sub-epicardium
and sub-endocardium calculated [21,36] using Analyze™. In
addition, immunostaining with anti-a-smooth muscle actin
(SMA) antibody (DakoCytomation, Glostrup, Denmark)
was performed and media-to-lumen ratio calculated to
assess microvascular wall thickening [22].

Oxidative stress and inflammation

Myocardial oxidative stress was evaluated by the in situ
production of superoxide anion, detected by fluores-
cence microscopy using dihydroethidium (DHE) [37].



Eirin et al. Stem Cell Research & Therapy 2015, 6:7
http://stemcellres.com/content/6/1/7

Inflammation was evaluated in myocardial sections by
double immunofluorescent staining for pro-inflammatory
CD68+/inducible nitric oxide synthase (INOS) + (M1) and
reparative CD68+/Arinase-1 (M2) macrophages (1:100;
Abnova Inc., Walnut, CA, USA) [5]. In addition, myocar-
dial expression of IL-10 (1:200; Biotechnology, Santa Cruz,
CA, USA) was determined by western blot and normal-
ized for a GADPH loading control.

Myocardial remodeling and fibrosis

Cross-sections (5-um) of the LV were stained with H & E,
Sirius red, and trichrome to assess myocyte cross-sectional
area, interstitial collagen deposition and fibrosis, respect-
ively. Slides (one per animal) were examined in a blinded
manner using ZEN®, as previously described [5,32].

Statistical analysis

Statistical analysis was performed using JMP 9.0 (SAS
Institute, Cary, NC, USA). Data were expressed as mean
+ standard deviation for normally distributed variables
or median (range) for non-Gaussian distributed data.
Parametric (one-way analysis of variance (ANOVA)
followed by unpaired Student’s t-test) and non-
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parametric (Wilcoxon followed by Kruskal-Wallis) tests
were used when appropriate, and significance accepted
for P <0.05.

Results

PTRA decreased blood pressure

Six weeks after stenosis induction, all RVH, RVH + PTRA
and RVH + PTRA + MSC pigs achieved hemodynamically
significant and comparable degrees of stenosis (80.5 +
14.5%, 78.8+10.0% and 78.6 + 15.3%, respectively) (P =
096 ANOVA). Four weeks after successful PTRA (0%
stenosis in all PTRA-treated pigs), MAP normalized in
RVH + PTRA and RVH + PTRA + MSC pigs (Table 1,
Figure 1A-B). Total cholesterol and low-density lipo-
protein (LDL) levels were elevated in all RVH groups
compared to normal, whereas high-density lipoprotein
(HDL) and triglyceride levels did not differ among the
groups (Table 1).

MSC characterization, function and engraftment

Isolated and cultured MSC expressed CD44 and CD90,
and transdifferentiated into osteocytes, chondrocytes
and adipocytes (Figure 1C-D). Thawed MSC vigorously

Table 1 Systemic characteristics and cardiac function of study groups (n =7 each) four weeks after PTRA or sham

Parameter NORMAL RVH RVH + PTRA + Vehicle RVH + PTRA + MSC
Degree of stenosis (%) 0 783+ 13.3*t 0 0
Body weight (Kg) 483+£10 513+36 50.7£39 541+3.7
Mean blood pressure (mmHg) 978+95 13794+ 55%F 99.0+9.0 964+ 26
Cholesterol (mg/dl): Total 922+48 483.7 +£34.8% 4255+ 144*% 4073 +26.8*
HDL 1053+332 1590+ 158 155.5+13.1 1446 +16.7
LDL 460+113 341.5+482* 279.2+22.3* 2505 +23.5%
Triglycerides (mg/dl) 7.5 (5-10) 6 (4-8) 55 (4-17) 8 (3-9)
Serum creatinine (mg/dl) 1.3+0.04 1.9+0.1% 1.9+0.1% 14+0.1
GFR (ml/min) 779+39 522 +27*% 569+ 32%t 723£31
Plasma renin activity (ng/mil/hour) 0.2 (0.07-0.25) 0.19 (0.02-0.30) 0.21 (0.06-0.24) 0.13 (0.06-0.25)
Isoprostane (pg/ml) 109.1+£73 231.6 +38.3*F 212.1+226%t 1304+11.7
Heart rate (bpm) 725 (63-104) 84.0 (69-123) 75.3 (70-96) 78.0 (66-119)
Stroke volume (ml) 408+20 443 +17 430%£10 447 £34
Ejection fraction (%) 639+24 59.7+23 626+22 65.1+4.7
Cardiac output (L/min) 32+03 36+02 35+02 34+02
LVMM (g/kg body weight) 16+0.1 24+02%t 18+0.] 18401
E/A ratio 12+£0.1 0.7 £0.1%F 08£0.1%t 1.1£01
EDV (ml) 843+22 66.0+2.7%t 65.6 + 2.4*t 806+45
Myocardial perfusion (ml/min/g):
Baseline 09+0.1 0.7 £0.04*t 0.7 £0.04*t 08£0.1
Response to adenosine 1.0+0.1% 0.7 £ 0.04*t 0.7 +0.1%F 09+0.1%

*P <0.05 versus normal, tP <0.05 versus RVH + PTRA + MSC, #P <0.05 versus baseline. Bpm, beats per minute; E/A early and late left ventricular filling ratio; EDV:
end diastolic volume; GFR, glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; LVMM: left ventricular muscle mass; MSC: mesenchymal
stem cells; PTRA: percutaneous transluminal renal angioplasty; RVH: renovascular hypertension. ltalics were used as subheadings of Myocardial perfusion
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Figure 1 Hemodynamic effect of renal artery stenosis and characteristics of MSC. A) Renal angiography before and after PTRA, showing
successful restoration of vessel patency (arrows). B) Mean arterial pressure (MAP) measured by telemetry decreased after PTRA. C) Immunostaining (left)
and FACS (right) showing that adipose tissue-derived MSC expressed CD44 and CD90 surface markers. D) Representative immunostaining showing that
MSC trans-differentiated into osteocytes, chondrocytes and adipocytes in vitro. E) Dil-labeled MSC (red) incorporated into tubes formed by HUVEC
(grey). F) Representative fluorescence of CM-Dil-labeled MSC (red, arrows) and cytokeratin (green) in the stenotic-kidney (left, X20) and myocardium
(right, X40) four weeks after administration. FACS, fluorescence activated cell sorting; HUVEC, human umbilical vein endothelial cells; MSC, mesenchymal
stem cells; PTRA, percutaneous transluminal renal angioplasty.

proliferated, migrated and formed tubes (Table 2, Figure 1E).
Four weeks after intra-renal administration, 13% to 14% of
injected MSC were detected at the renal tubulointerstitial
compartment, yet only 0.03% to 0.05% of injected cells were

found in the myocardium (Figure 1 F). Table 2 Function of porcine mesenchymal stem cells

before delivery

MSC improved renal function Parameter
Stenotic-kidney GFR was lower and serum creatinine  Proliferation (OD) 034+001
levels higher in RVH and RVH + PTRA compared to  Migration (OD) 249+ 0.26

normal, yet normalized in PTRA + MSC-treated pigs  1,pe Formation:
(Table 1, P <0.05 versus RVH and RVH + PTRA, P >0.05
versus normal). Systemic PRA was similar in all groups,
as common in chronic RVH [38].

Tube (number/field) 1564 + 232
Tube length (mm) 450+1.05
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MSC improved cardiac function and oxygenation

Heart rate, stroke volume, ejection fraction and cardiac out-
put were similar among the groups (Table 1, P >0.05,
ANOVA). However, LVMM was higher in RVH compared
with normal, but restored to normal levels in both PTRA-
treated groups. E/A ratio and EDV were lower in RVH com-
pared to normal, unchanged by PTRA, and normalized only
in MSC-treated pigs. Both myocardial perfusion and its re-
sponse to adenosine were blunted in RVH and RVH +
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PTRA, but normalized in RVH+PTRA +MSC pigs
(Table 1). Likewise, R2* values were similarly elevated in
RVH and RVH + PTRA compared to normal, but were re-
stored to normal levels in RVH + PTRA + MSC (Figure 2A).

Microvascular remodeling was attenuated in MSC-treated
pigs

Sub-epicardial and sub-endocardial densities of medium
and large microvessels were similar among the groups
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Figure 2 MSC improved renal oxygenation and microvascular architecture. A) Blood oxygen level-dependent (BOLD) MRI images of the LV
(left), showing hypoxic myocardium (yellow-red) in RVH, and quantification of R2* index (right). *P <0.05 versus normal, TP <0.05 versus RVH +
PTRA + MSC. B) Representative myocardial micro-CT images (top) and quantification of spatial density of small, medium and large microvessels in
the subepicardium and subendocardium (bottom). C) Myocardium sections stained with a-smooth muscle actin (left) and quantification of vessel
media-to-lumen ratio (right). *P <0.05 versus normal, tP <0.05 versus RVH + PTRA + MSC. CT, computed tomography; LV, left ventrical; MSC,
mesenchymal stem cells; MRI, magnetic resonance imaging; PTRA, percutaneous transluminal renal angioplasty; RVH, renovascular hypertension.
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(See figure on previous page.)

Figure 3 MSC decreased inflammation. A) Renal release of interleukin (IL)1a, ILTra, IL13, IL10, e-selectin, and endothelin (ET)-1 in study groups.
B) Immunostaining for CD68/iNOS (M1) and CD68/Arginase-1 (M2) macrophages (top), their quantification and ratio (bottom). C) Representative
immunoblots and myocardial protein expression of IL10 in normal, RVH, RVH + PTRA, and RVH + PTRA + MSC pigs. *P <0.05 versus normal, TP <0.05
versus RVH + PTRA + MSC. MSC, mesenchymal stem cells; PTRA, percutaneous transluminal renal angioplasty; RVH, renovascular hypertension.

(Figure 2B). The number of small vessels in the sub-
epicardium was reduced in RVH, but did not differ from
normal levels in either PTRA-treated group. However,
sub-endocardial density of small size vessels was equally
decreased in RVH and RVH + PTRA compared to normal,
but normalized in PTRA-MSC-treated pigs (Figure 2B).
Media-to-lumen ratios were higher in all RVH compared
to normal, but improved only in RVH + PTRA + MSC pigs
(Figure 2C).

MSC decreased inflammation and oxidative stress

Renal release of IL1a and IL1lra was elevated in RVH
compared to normal, but normalized in both PTRA-
treated groups (Figure 3A). However, release of IL-1p, e-
selectin and ET-1 were similarly higher in RVH and
RVH + PTRA compared to normal, but normalized in
PTRA + MSC pigs. Renal release of IL10 was similarly
decreased in RVH and RVH + PTRA, yet restored to
normal levels in RVH + PTRA + MSC. The number of
myocardial M1 macrophages was elevated in RVH and
RVH + PTRA animals, but normalized in RVH +
PTRA + MSC (Figure 3B). In contrast, the number of
reparative M2 macrophages was elevated only in
PTRA + MSC-treated pigs. Furthermore, the M1/M2
ratio was higher in RVH and RVH + PTRA compared
to normal, but normalized in RVH +PTRA + MSC.
Myocardial expression of IL-10 was downregulated in
all RVH compared to normal, but improved only in
PTRA + MSC-treated pigs (Figure 3C).

Circulating levels of isoprostanes were higher in RVH
and RVH + PTRA compared to normal, but were re-
stored to normal levels in RVH + PTRA + MSC (Table 1).
Likewise, in situ production of superoxide anion was in-
creased in RVH and RVH + PTRA, and normalized only
in PTRA + MSC-treated piss (Figure 4A).

MSC ameliorated myocardial remodeling and fibrosis
Myocyte cross-sectional area was higher in RVH com-
pared to normal, but normalized in both PTRA-treated
groups (Figure 4B). Both collagen deposition and fibrosis
were elevated in RVH and RVH + PTRA compared to
normal, yet normalized in PTRA + MSC-treated pigs
(Figure 4C).

Discussion

This study demonstrates that adjunctive MSC delivery in
addition to PTRA decreased myocardial remodeling and
improved cardiac function in porcine RVH, possibly by

preserving stenotic-kidney function and decreasing renal
release and systemic levels of noxious and vasocon-
strictor humoral factors. These observations support
MSC delivery during PTRA as a promising therapeutic
intervention for preserving the myocardium in experi-
mental RVH.

Several deleterious pathways may account for persist-
ent cardiac injury after reversal of RVH. We have previ-
ously shown in porcine non-atherosclerotic RVH that
PTRA improved coronary microvascular function and
architecture and reversed myocardial hypertrophy and
diastolic dysfunction [39]. However, superimposition of
atherosclerosis exacerbates the effect of RVH on the
myocardial microvasculature, which may compromise
cardiac outcomes after revascularization [28]. Indeed,
coronary artery disease in patients with RVH is a pre-
dictor of worse outcomes after renal revascularization,
likely reflecting diffuse atherosclerotic disease [40].

Inflammation and oxidative stress are also important
determinants of persistent cardiac dysfunction after
renal revascularization. Endothelial activation, an early
event in atherosclerosis, is characterized by increased
plasma concentration of soluble adhesion molecules
such as e-selectin that mediate adhesion of circulating
leukocytes to the vascular wall, contributing to cardiac
injury and dysfunction [41]. Endothelial activation is as-
sociated with increased release of the potent vasocon-
strictor ET-1 [42]. Importantly, ET-1 and IL-1 have been
implicated in the pathophysiology of LV hypertrophy
and myocardial dysfunction [43,44]. Similarly, reactive
oxygen species (ROS) levels are increased in the myocar-
dium of 2 kidney-1 clip (2K1C) rats, implicating oxida-
tive stress in RVH-induced cardiac hypertrophy [45].
Importantly, in pigs with RVH, myocardial inflammation
and oxidative stress persists after PTRA alone, associ-
ated with myocardial remodeling and impaired diastolic
function [5].

We have previously shown that post-stenotic porcine
and human kidneys release several inflammatory cyto-
kines that accelerate renal injury [8,9] and might damage
the remote myocardium. We have also shown in porcine
RVH that selective improvement of renal function reduces
circulating levels of these noxious mediators, decreasing
myocardial fibrosis and enhancing microvascular integrity,
architecture and cardiac diastolic function [6].

Substantial evidence suggests that MSC can contribute
to both renal and cardiac repair [13]. We have previously
shown in porcine RVH that intra-renal delivery of MSC
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Figure 4 MSC ameliorated myocardial oxidative stress, remodeling, and fibrosis. A) Myocardial production of superoxide anion, detected
by DHE (top), and its quantification (bottom). B) Left ventricular sections stained with H & E (top) and quantification of myocyte cross-sectional
area (bottom). C) Representative staining and quantification of Sirius red and trichrome. *P <0.05 versus normal, tP <0.05 versus RVH + PTRA +

MSC. DHE, dihydroethidium; MSC, mesenchymal stem cells; PTRA, percutaneous transluminal renal angioplasty; RVH, renovascular hypertension.

during PTRA preserves renal structure and function dis-
tal to a stenosis [17,18]. Moreover, MSC decreased re-
lease of inflammatory cytokines and improved renal
function in porcine non-revascularized kidneys [8]. Our
study extends these observations, demonstrating de-
creased release of pro-inflammatory markers accompan-
ied by normalized release of the anti-inflammatory IL-10
induced by MSC in PTRA-treated pigs. Consequently,
an anti-inflammatory effect of MSC was conferred on
the heart, reflected in increased expression of IL-10 and
decreased pro-inflammatory/reparative macrophage ratio
in RVH + PTRA + MSC pigs. Furthermore, renal release
of e-selectin and ET-1 were normalized in PTRA-MSC
treated pigs, suggesting decreased systemic endothelial
activation and vasoconstrictor activity, which might have
improved myocardial perfusion responses.

Additionally, we found that treatment with PTRA +
MSC normalized systemic levels of the oxidative stress
marker and potent coronary vasoconstrictor isoprostane
and decreased myocardial production of superoxide anion.
This might be secondary to their anti-inflammatory effect,
which might have, in turn, blunted oxidative stress. For
example, interferon-y triggers formation and release of
ROS in cardiovascular disease [46] and tumor necrosis
factor-a increases ROS generation in the rat myocardium
[47]. Likewise, IL-1 pretreatment of isolated rat hearts
causes polymorphonuclear leukocyte accumulation associ-
ated with increased hydrogen peroxide-dependent oxida-
tive stress, suggesting a direct link between myocardial
inflammation and oxidative stress [48]. Oxidative stress
also contributes to RVH-induced myocardial microvascu-
lar remodeling, leading to impaired perfusion [30]. In
agreement, we found a decreased number of small micro-
vessels in the sub-epicardium and sub-endocardium in
RVH pigs. Although the number of small sub-epicardial
microvessels was similarly restored in both PTRA-treated
groups, the sub-endocardial density of small microvessels
was normalized only in RVH + PTRA + MSC, accompan-
ied by a reduced media-to-lumen ratio. MSC-induced pro-
tection of microvascular architecture and decreased vessel
remodeling might have improved blood supply and oxy-
gen delivery to the myocardium, disclosed by normalized
R2* index.

Notably, myocardial collagen deposition and fibrosis,
similarly upregulated in RVH and RVH + PTRA, were
restored to normal levels only in PTRA + MSC-treated
pigs. Although PTRA prevented LV remodeling (LVMM
and myocyte cross-sectional area), diastolic function

(E/A ratio and EDV) normalized only in PTRA + MSC-
treated pigs, possibly mediated by decreased oxidative
stress, inflammation and fibrosis. In line with these ob-
servations, myocardial perfusion and its response to ad-
enosine normalized exclusively in RVH + PTRA + MSC,
possibly secondary to restoration of microvascular
structure and function and downregulated renal release
and systemic levels of the potent vasoconstrictors ET-1
and isoprostane.

MSC renoprotection is likely attributable to their cap-
acity to secrete paracrine factors rather than their ability
to engraft the kidney. We have previously shown that
MSC are mostly observed at the interstitium four weeks
after injection, some incorporate into proximal renal tu-
bules [16], and very few engraft in blood vessels [17].
However, few of the engrafted cells showed trans-
differentiation to renal cells, suggesting that the main
effect of MSC in the kidney is exerted by paracrine ac-
tions. We have also previously shown that porcine
MSC actively secrete the potent pro-angiogenic medi-
ator vascular endothelial growth factor in conditioned
medium in vitro [16,17]. Likewise, porcine MSC co-
cultured with monocytes induce a phenotypic switch of
pro-inflammatory to reparative macrophages, suggest-
ing a direct paracrine anti-inflammatory effect [8]. Fur-
thermore, we have recently demonstrated that porcine
MSC release extracellular vesicles that possess an im-
portant set of transcription factors, which might be able
to reprogram target cells or otherwise modify their bio-
logical phenotype [49]. Therefore, paracrine actions of
functionally active cells might have contributed to pre-
serve the stenotic-kidney parenchyma. However, very
few MSC were retained in the myocardium four weeks
after delivery, arguing against a major contribution of
direct MSC effects to attenuation of cardiac injury. The
effects on the heart were likely achieved indirectly by
the decrease in preponderance of systemic inflamma-
tory, pro-oxidant and vasoconstrictor mediators.

In the current study, we used allogeneic MSC to simu-
late the use of existing ‘off-the-shelf” MSC products,
which allow generation of a large amount of cells from a
small number of donors in a short period of time. Al-
though T-cell recognition by the recipient of alloantigen
may occur after injection of allogeneic cells, MSC are
considered immune-privileged because of the lack of ex-
pression of costimulatory molecules [50]. Indeed, histo-
logical analysis showed no evidence of cellular rejection
(for example, CD3 clusters) in tissue sections from RVH +
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PTRA + MSC pigs. Moreover, the current study demon-
strates that post-thawing injection-ready MSC retain vital
activities including proliferation, migration and angiogenic
function (tube formation).

Limitations

Study limitations include the use of young animals, short
duration of the disease and lack of co-morbidities, such
as essential hypertension, which may exacerbate RVH-
induced cardiac damage. Nevertheless, cardiac injury
and dysfunction in our porcine model closely resemble
that in human RVH hearts. In our model, PTRA was
more successful in decreasing blood pressure than typic-
ally seen in humans, yet myocardial injury and dysfunc-
tion persisted after revascularization. The use of enzyme
immunoassay kit to measure isoprostane levels and E/A
(rather than E/E’ ratio) to characterize LV dysfunction
are also suboptimal. Future studies in human RVH are
needed to validate these results and determine the opti-
mal timing and dose of MSC.

Conclusions

The current study showed that a single intra-renal infu-
sion of allogeneic adipose tissue-derived MSC during
PTRA indirectly improved cardiac function and oxygen-
ation, and decreased myocardial injury four weeks after
revascularization. MSC cardio-protective properties ap-
pear to be mediated by preservation of stenotic-kidney
function, as well as attenuation of endothelial activation,
vasoconstrictor activity, oxidative stress and inflamma-
tory signals released from the ischemic kidney. These
observations support MSC-based approaches as an ad-
junct therapy to preserve cardiac function and structure
after PTRA in experimental RVH.

Abbreviations

2K1C: 2 kidney-1 clip; A: late LV filling; BOLD-MRI: blood oxygen level-dependent
MRI; ANOVA: analysis of variance; CORAL: Cardiovascular Outcomes in
Renal Athjerosclerotic Lesions; DAPI: 4',6-diamidino-2-phenylindole;

DHE: dihydroethidium; E: early LV filling; EDV: end diastolic volume;

ET: endothelin; GFR: glomerular filtration rate; H & E: hematoxylin and
eosin; HDL: high-density lipoprotein; HUVEC: human umbilical vein
endothelial cells; IL: interleukin; iNOS: inducible nitric oxide synthase;

IVC: inferior vena cava; LDL: low-density lipoprotein; LV: left ventricle;
LVMM: LV muscle mass; MAP: mean arterial pressure; MDCT: multi-detector
computed tomography; MSC: mesenchymal stem cells; PBS: phosphate-buffered
saline; PRA: plasma renin activity; PTRA: percutaneous transluminal renal
angiopasty; r: receptor; RBF: renal blood flow; ROS: reactive oxygen species;

RV: renal vein; RVH: renovascular hypertension; SMA: smooth muscle actin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AE: conception and design, collection and/or assembly of data, data analysis
and interpretation, manuscript writing, and final approval of manuscript;

XZ: collection and/or assembly of data, data analysis and interpretation, and
manuscript writing; CMF: collection and/or assembly of data and data
analysis and interpretation; SMR, VWAJ, and AL: collection and/or assembly of
data, data analysis and interpretation, manuscript writing and final approval

Page 11 of 12

of manuscript; LO.L.: conception and design, financial support, collection
and/or assembly of data, data analysis and interpretation, manuscript writing,
and final approval of manuscript. All authors read and approved the final
version of the manuscript.

Acknowledgements

This study was partly supported by NIH grants: DK73608, DK100081,
HL121561, HL123160, AG31750, UL1-RR000135, and the Mayo Clinic Center
for Regenerative Medicine.

Author details

'Department of Internal Medicine, Division of Nephrology and Hypertension,
Mayo Clinic, Rochester, MN, USA. “Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA. *Division of Cardiovascular Diseases, Mayo Clinic,
Rochester, MN, USA.

Received: 17 September 2014 Revised: 2 January 2015
Accepted: 5 January 2015 Published: 19 January 2015

References

1. Green D, Kalra PA. The heart in atherosclerotic renovascular disease. Front
Biosci (Elite Ed). 2012;4:856-64.

2. Khangura KK, Eirin A, Kane GC, Misra S, Textor SC, Lerman A, et al. Cardiac
function in renovascular hypertensive patients with and without renal
dysfunction. Am J Hypertens. 2014;27:445-53.

3. Murphy TP, Soares G, Kim M. Increase in utilization of percutaneous renal
artery interventions by medicare beneficiaries, 1996-2000. AJR Am J
Roentgenol. 2004;183:561-8.

4. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, et al.
Stenting and medical therapy for atherosclerotic renal-artery stenosis. N
Engl J Med. 2014;370:13-22.

5. Eirin A, Williams BJ, Ebrahimi B, Zhang X, Crane JA, Lerman A, et al.
Mitochondrial targeted peptides attenuate residual myocardial damage
after reversal of experimental renovascular hypertension. J Hypertens.
2014;32:154-65.

6. Urbieta-Caceres VH, Zhu XY, Jordan KL, Tang H, Textor K, Lerman A, et al.
Selective improvement in renal function preserved remote myocardial
microvascular integrity and architecture in experimental renovascular
disease. Atherosclerosis. 2012;221:350-8.

7. Kromer BM, Tippins JR. Coronary artery constriction by the isoprostane 8-epi
prostaglandin f2 alpha. Br J Pharmacol. 1996;119:1276-80.

8. Eirin A, Zhang X, Zhu XY, Tang H, Jordan KL, Grande JP, et al. Renal vein
cytokine release as an index of renal parenchymal inflammation in chronic
experimental renal artery stenosis. Nephrol Dial Transplant. 2014;29:274-82.

9. Eirin A, Gloviczki ML, Tang H, Gossl M, Jordan KL, Woollard JR, et al.
Inflammatory and injury signals released from the post-stenotic human
kidney. Eur Heart J. 2013;34:548a.

10.  Eirin A, Zhu XY, Li Z, Ebrahimi B, Zhang X, Tang H, et al. Endothelial
outgrowth cells shift macrophage phenotype and improve kidney viability in
swine renal artery stenosis. Arterioscler Thromb Vasc Biol. 2013;33:1006-13.

11. Saad A, Herrmann SM, Crane J, Glockner JF, McKusick MA, Misra S, et al.
Stent revascularization restores cortical blood flow and reverses tissue
hypoxia in atherosclerotic renal artery stenosis but fails to reverse
inflammatory pathways or glomerular filtration rate. Circ Cardiovasc Interv.
2013;6:428-35.

12. Lotfinegad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B.
Immunomodulatory nature and site specific affinity of mesenchymal stem
cells: a hope in cell therapy. Adv Pharm Bull. 2014;4:5-13.

13. Reinders ME, Leuning DG, de Fijter JW, Hoogduijn MJ, Rabelink TJ.
Mesenchymal stromal cell therapy for cardio renal disorders. Curr Pharm
Des. 2014;20:2412-29.

14.  Karpov AA, Uspenskaya YK, Minasian SM, Puzanov MV, Dmitrieva R|, Bilibina AA,
et al. The effect of bone marrow- and adipose tissue-derived mesenchymal
stem cell transplantation on myocardial remodelling in the rat model of
ischaemic heart failure. Int J Exp Pathol. 2013,94:169-77.

15. Otto Beitnes J, Oie E, Shahdadfar A, Karlsen T, Muller RM, Aakhus S, et al.
Intramyocardial injections of human mesenchymal stem cells following
acute myocardial infarction modulate scar formation and improve left
ventricular function. Cell Transplant. 2012;21:1697-709.

16. Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A, Lerman LO.
Mesenchymal stem cells and endothelial progenitor cells decrease renal



Eirin et al. Stem Cell Research & Therapy 2015, 6:7
http://stemcellres.com/content/6/1/7

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

injury in experimental swine renal artery stenosis through different
mechanisms. Stem Cells. 2013;31:117-25.

Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, et al. Adipose
tissue-derived mesenchymal stem cells improve revascularization outcomes
to restore renal function in swine atherosclerotic renal artery stenosis. Stem
Cells. 2012,30:1030-41.

Ebrahimi B, Eirin A, Li Z, Zhu XY, Zhang X, Lerman A, et al. Mesenchymal
stem cells improve medullary inflammation and fibrosis after
revascularization of swine atherosclerotic renal artery stenosis. PLoS One.
2013,8:e67474.

Zhu XY, Rodriguez-Porcel M, Bentley MD, Chade AR, Sica V, Napoli C, et al.
Antioxidant intervention attenuates myocardial neovascularization in
hypercholesterolemia. Circulation. 2004;109:2109-15.

Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO. Simvastatin
promotes angiogenesis and prevents microvascular remodeling in chronic
renal ischemia. FASEB J. 2006;20:1706-8.

Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A,
et al. Cortical microvascular remodeling in the stenotic kidney: role of
increased oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24:1854-9.
Zhu XY, Daghini £, Chade AR, Napoli C, Ritman EL, Lerman A, et al.
Simvastatin prevents coronary microvascular remodeling in renovascular
hypertensive pigs. J Am Soc Nephrol. 2007;18:1209-17.

Eirin A, Ebrahimi B, Zhang X, Zhu XY, Tang H, Crane JA, et al. Changes in
glomerular filtration rate after renal revascularization correlate with
microvascular hemodynamics and inflammation in swine renal artery
stenosis. Circ Cardiovasc Interv. 2012,5:720-8.

Eirin A, Li Z, Zhang X, Krier JD, Woollard JR, Zhu XY, et al. A mitochondrial
permeability transition pore inhibitor improves renal outcomes after
revascularization in experimental atherosclerotic renal artery stenosis.
Hypertension. 2012;60:1242-9.

Chade AR, Rodriguez-Porcel M, Grande JP, Krier JD, Lerman A, Romero JC,
et al. Distinct renal injury in early atherosclerosis and renovascular disease.
Circulation. 2002;106:1165-71.

Chade AR, Rodriguez-Porcel M, Grande JP, Zhu X, Sica V, Napoli C, et al.
Mechanisms of renal structural alterations in combined hypercholesterolemia
and renal artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23:1295-301.
Daghini E, Primak AN, Chade AR, Krier JD, Zhu XY, Ritman EL, et al.
Assessment of renal hemodynamics and function in pigs with 64-section
multidetector CT: comparison with electron-beam CT. Radiology.
2007;243:405-12.

Rodriguez-Porcel M, Lerman A, Herrmann J, Schwartz RS, Sawamura T,
Condorelli M, et al. Hypertension exacerbates the effect of
hypercholesterolemia on the myocardial microvasculature. Cardiovasc Res.
2003;58:213-21.

Lin J, Zhu X, Chade AR, Jordan KL, Lavi R, Daghini E, et al. Monocyte
chemoattractant proteins mediate myocardial microvascular dysfunction in
swine renovascular hypertension. Arterioscler Thromb Vasc Biol.
2009;29:1810-6.

Zhu XY, Daghini E, Chade AR, Rodriguez-Porcel M, Napoli C, Lerman A, et al.
Role of oxidative stress in remodeling of the myocardial microcirculation in
hypertension. Arterioscler Thromb Vasc Biol. 2006,26:1746-52.

Urbieta Caceres VH, Lin J, Zhu XY, Favreau FD, Gibson ME, Crane JA, et al.
Early experimental hypertension preserves the myocardial microvasculature
but aggravates cardiac injury distal to chronic coronary artery obstruction.
Am J Physiol Heart Circ Physiol. 2011;300:H693-701.

Li ZL, Ebrahimi B, Zhang X, Eirin A, Woollard JR, Tang H, et al. Obesity-
metabolic derangement exacerbates cardiomyocyte loss distal to moderate
coronary artery stenosis in pigs without affecting global cardiac function.
Am J Physiol Heart Circ Physiol. 2014;306:H1087-101.

Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M.
Characterization of the optimal culture conditions for clinical scale
production of human mesenchymal stem cells. Stem Cells. 2006,24:462-71.
Zhu XY, Daghini E, Chade AR, Lavi R, Napoli C, Lerman A, et al. Disparate
effects of simvastatin on angiogenesis during hypoxia and inflammation.
Life Sci. 2008,83:801-9.

Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, Simari RD, et al. Endothelial
progenitor cells restore renal function in chronic experimental renovascular
disease. Circulation. 2009;119:547-57.

Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C,

et al. Antioxidant intervention blunts renal injury in experimental renovascular
disease. J Am Soc Nephrol. 2004;15:958-66.

Page 12 of 12

37. Chade AR Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, et al.
Comparison of acute and chronic antioxidant interventions in experimental
renovascular disease. Am J Physiol Renal Physiol. 2004;286:F1079-86.

38, Pipinos Il, Nypaver TJ, Moshin SK, Careterro OA, Beierwaltes WH. Response
to angiotensin inhibition in rats with sustained renovascular hypertension
correlates with response to removing renal artery stenosis. J Vasc Surg.
1998,28:167-77.

39.  Urbieta-Caceres VH, Zhu XY, Gibson ME, Favreau FD, Jordan K, Lerman A,
et al. Reversal of experimental renovascular hypertension restores coronary
microvascular function and architecture. Am J Hypertens. 2011,24:458-65.

40.  Khangura KK, Eirin A, Kane GC, Misra S, Textor SC, Lerman A, et al. Extrarenal
atherosclerotic disease blunts renal recovery in patients with renovascular
hypertension. J Hypertens. 2014;32:1300-6.

41. Chong AY, Freestone B, Patel J, Lim HS, Hughes E, Blann AD, et al.
Endothelial activation, dysfunction, and damage in congestive heart failure
and the relation to brain natriuretic peptide and outcomes. Am J Cardiol.
2006,97:671-5.

42, Victorino GP, Newton CR, Curran B. Endothelin-1 decreases microvessel
permeability after endothelial activation. J Trauma. 2004;56:832-6.

43, Gueant-Rodriguez RM, Juilliere Y, Battaglia-Hsu SF, Debard R, Gerard P,
Reyes P, et al. Association of ilTb polymorphism with left ventricular systolic
dysfunction: A relation with the release of interleukin-Tbeta in stress
condition. Pharmacogenet Genomics. 2011;21:579-86.

44, Long CS. The role of interleukin-1 in the failing heart. Heart Fail Rev.
2001,6:81-94.

45, Rizzi £, Ceron CS, Guimaraes DA, Prado CM, Rossi MA, Gerlach RF, et al.
Temporal changes in cardiac matrix metalloproteinase activity, oxidative

stress, and TGF-B in renovascular hypertension-induced cardiac hypertrophy.

Exp Mol Pathol. 2013;94:1-9.

46.  Schroecksnadel K, Frick B, Winkler C, Fuchs D. Crucial role of interferon-gamma
and stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol.
2006;4:205-13.

47.  Mariappan N, Soorappan RN, Haque M, Sriramula S, Francis J. TNF-alpha-
induced mitochondrial oxidative stress and cardiac dysfunction: restoration
by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol.
2007,293:H2726-37.

48. Brown JM, White CW, Terada LS, Grosso MA, Shanley PF, Mulvin DW, et al.
Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Proc Natl
Acad Sci U S A. 1990,87:5026-30.

49. Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, et al. MicroRNA
and mRNA cargo of extracellular vesicles from porcine adipose tissue-
derived mesenchymal stem cells. Gene. 2014;551:55-64.

50. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of
passaging. Exp Hematol. 2004;32:414-25.

doi:10.1186/scrt541

Cite this article as: Eirin et al.: Intra-renal delivery of mesenchymal stem
cells attenuates myocardial injury after reversal of hypertension in
porcine renovascular disease. Stem Cell Research & Therapy 2015 6:7.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Renal function
	Cardiac function and oxygenation
	MSC isolation, characterization, function, delivery and tracking
	Microvascular remodeling
	Oxidative stress and inflammation
	Myocardial remodeling and fibrosis
	Statistical analysis

	Results
	PTRA decreased blood pressure 
	MSC characterization, function and engraftment
	MSC improved renal function
	MSC improved cardiac function and oxygenation
	Microvascular remodeling was attenuated in MSC-treated pigs
	MSC decreased inflammation and oxidative stress
	MSC ameliorated myocardial remodeling and fibrosis

	Discussion
	Limitations
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

