
Introduction

Th e emerging fi eld of regenerative medicine requires a 

reliable cell source in addition to biomaterial scaff olds 

and cytokine/growth factors. Th e ‘cell’ is a particularly 

critical element for cell replacement therapies in order to 

provide a safe and suffi  cient cell supply for clinical 

applications. Eff orts to search for an adequate cell type 

and cell source have been conducted and have continued 

along with the discussions for their use in clinical 

application.

Th ere are many potential cell sources for regenerative 

medicine, including bone marrow-derived mesenchymal 

stem cells, tissue-specifi c progenitor cells, embryonic 

stem (ES) cells, and induced pluripotent stem (iPS) cells. 

Although their biological potentials have been demon-

strated, none of these cells is widely accepted as a 

defi nitive cell source for clinical applications. Each cell 

type possesses diff erent advantages as well as limitations 

for their use, such as safety or availability. It will be 

helpful to search for a potential stem cell source from the 

perspective of its potential for clinical application. What 

is the sine qua non of the cells for clinically applicable 

regenerative medicine? At the end of this review, this 

question will be discussed further.

Th ere is increasing evidence that the human placenta 

contains pluripotent or multipotent stem cells or both. 

Various multipotent stem cells have been isolated from 

diff erent parts of the human placenta, such as the 

amnion, chorion, umbilical cord, and fetal blood. As 

placenta-derived cells, these stem cells have common 

advantages (Figure 1). Specifi c types of placenta-derived 

stem cells, such as trophoblastic, hematopoietic, and 

mesen chymal stroma cells, have been discussed else-

where [1-3]. Here, we will review stem cells derived from 

the amnion of human placentae, specifi cally amniotic 

epithelial (AE) cells. First, we will summarize previous 

studies that have demonstrated the unique stem cell 

characteristics of AE cells. On the basis of these fi ndings, 

we introduce a model theory that explains why some AE 

cells, unlike other adult somatic stem cells, may possess 

pluripotent features. Second, we will discuss topics and 

pitfalls that are currently under discussion. Th ird, 

previous works that are leading the therapeutic appli-

cation of AE cells will be summarized. Last, the potential 

of the clinical application of AE-derived stem cells and 

the future direction of the research are discussed.

Amniotic epithelial cells: what is so special about 

them?

Th e epithelial cell population could be exclusively iso-

lated from the amnions of term human placentae by 

specifi c enzymatic digestion [4]. Th e cell surface antigen 

profi le data indicate that AE cells are basically 

homogeneous cell populations for most of the cell surface 

markers [5]; however, the reactivity against ‘stem cell’-

specifi c antigens varies. Following isolation, some of the 
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AE cells express stem cell surface markers, such as stage-

specifi c embryonic antigen-3 (SSEA-3) and SSEA-4 and 

tumor rejection antigen 1-60 (TRA1-60) and TRA1-81, 

which are known to be expressed on human ES cells [6]. 

About 15%, 50%, and 5% to 10% of naïve human AE 

(hAE) cells are positive for SSEA-3, SSEA-4, and TRA 

stem cell markers, respectively [7]. Normally, undiff er en-

tiated stem cells homogeneously express these stem cell 

markers [6]. Th e variance of the ratio of stem cell marker-

positive cells indicates that naïve AE cell populations 

contain cells in various stage of ‘stemness’. Interestingly, 

the ratios of stem cell marker-positive AE cells (5% to 

50%) are considerably higher than for other somatic/

tissue stem cells. Most of the somatic/tissue stem cells 

are 0.1% to 0.01% of the residing tissue. For instance, the 

hematopoietic stem cell population is only 0.01% to 

0.05% of all bone marrow cells [8]. Th e relatively high 

ratio of stem cell marker-positive cells in AE cell 

populations as somatic stem cells could be explained by 

the model theory. Th e cell surface markers that are 

expressed by hAE cells are summarized and compared 

with the expression of other types of stem cells in Table 1 

[2,7,9-15].

Stem cells ‘left behind’: developmental uniqueness 

of the amniotic epithelial cell

Unlike other parts of the placenta, the amniotic epithe-

lium is a tissue of epiblastic origin. Human amnioblast is 

derived from the pluripotent epiblast around the eighth 

day following fertilization, whereas other parts of the 

placenta are derived from the trophectoderm. When the 

blastocyst is partially embedded in the endometrial 

stroma, the inner cell mass (or embryoblast) diff erentiates 

into two layers: the hypoblast and the epiblast. Th e 

epiblast is the source of all three germ layers and 

eventually forms the developing embryo. At the same 

time, a small cavity (amniotic cavity) appears within the 

epiblast. Epiblast cells adjacent to the amniotic cavity 

(Figure 2) are called amnioblasts, which eventually form 

the amniotic epithelium. Concomitantly, some of the 

migrating hypoblasts transdiff erentiate into mesenchy-

mal cells (extraembryonic mesoderm) and develop into 

the amniotic connective tissue. Th e epiblast-amnioblast 

segregation occurs before gastrulation, which is con-

sidered the fi rst dynamic event of organogenesis. All 

short-range organogenetic signals may not reach the 

segregated stem cells throughout gestation. For instance, 

cardiogenesis is a complex event that is orchestrated by 

short-range fi broblast growth factors (FGFs) and Hedge-

hog signals [16]. Th erefore, some epiblasts/amnioblasts 

that are spatially segregated by the amniotic cavity from 

the epicenter of organogenesis may escape from these 

diff erentiation cues. After 10 months, although most of 

the cells have diff erentiated by following the epithelial 

cell fate and have lost their stem cell characteristics, 

about 5% to 10% of the AE cells may retain the epiblast-

like stem cell characteristics at term [7]. If this model 

theory is correct, fetal amniotic epithelium should con-

tain more stem cell marker-positive cells than term 

amniotic epithelium. Izumi and colleagues [17] demon-

strated that about 40% and 30% of fetal (early second 

trimester) AE cells are positive for stem cell markers 

TRA1-60 and TRA 1-81, respectively, whereas 5% of 

term AE cells are positive for these markers. Th e amnion 

is a fairly large tissue that may not be very uniform but is 

rather regionalized [18]. To exclude variances due to the 

Figure 1. Advantages of amniotic epithelial cells for clinical application. Fundamental advantages of placenta-derived stem cells and amniotic 

epithelial cell-specifi c biological advantages are summarized. QOL, quality of life.
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regionalized stem cell localization, amnion samples were 

harvested from three diff erent parts of the amnion: the 

center of the disc, the edge of the disc, and the membrane 

part. Th ere was no signifi cant diff erence between samples 

by region, at least in these three parts [19]. On the other 

hand, the mechanism and signals that induce diff eren-

tiation on 90% of amnioblasts of epiblast origin are 

unclear. It has been shown that cultured AE cells secrete 

various morphogens and growth factors such as epider-

mal growth factor, Noggin, Activin [20], platelet-derived 

growth factor, vascular endothelial growth factor, angio-

genin, transforming growth factor-beta-2 (TGF-β2), and 

tissue inhibitors of metalloproteinases (TIMP-1 and 

TIMP-2) [21]. In addition to playing an important role in 

Table 1. Comparison of stem cell surface marker expression in stem cells

                        AE     ES NS MS HS

First author Fatimah Bilic Stadler Banas Parolini Minas Ilancheran Miki Osman   

Reference  [9] [10] [11] [12] [2] [13] [14] [5,7] [15]   

c-met    +       + 

CCR4    −    ± +   

CD10     +      + 

CD105   Up  +      + 

CD106 (VCAM-1)        −   + 

CD117 (c-kit) −   − ±   ±   + +

CD13   Up  +      + 

CD14     −       

CD133    −    − + + + +

CD140b     +       

CD166 (ALCAM)  +   +      + 

CD24    +    + + +  

CD29    + +    +  + 

CD31 (PECAM-1) −       −   − 

CD324 (E-cadherin)    + +   + +   

CD338 (ABCG2)    +    + + +  +

CD34 − −  − −   −   − +

CD349     −       

CD44 + + Up  +      + 

CD45 − −   −      − 

CD49d     −       

CD49e  + Up  +       

CD49f    +    + +   

CD54 (ICAM-1)   +     +   + 

CD73 + +   +      + 

CD9 +   +    + + +  

CD90 +  Up Up +  +    + 

GCTM2     + +   +   

Sialyl Lewis a     +       

SSEA-1    − −  − − −   

SSEA3  +  + +  + + +   

SSEA4  + + + + + + + +   

TRA1-60   Down + +  + + +   

TRA1-81   Down + +  + + +   

−, negative; +, positive; ±, weak; AE, amniotic epithelial cell; Down, downregulated each antigen expression; ES, embryonic stem cell; HS, hematopoietic stem cell; MS, 
mesenchymal stem cell; NS, neural stem cell; SSEA, stage-specifi c embryonic antigen; TRA, tumor rejection antigen; Up, upregulated each antigen expression.
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maintaining pregnancy, these factors may induce AE cell 

maturation or apoptosis to the epiblast-like immature AE 

cells. It must be noted that hAE cells are able to support 

the pluripotency of primate and mouse ES cells when 

primary hAE cells were used as feeder layer cells [22,23]. 

Th ese data indicate that some of the secreted factors or 

cell-to-cell signaling (or both) might play a role in main-

taining epiblast-like stemness of some AE cells. Th ere are, 

however, no clear experimental data that indicate why 

the stem cell marker-positive AE cells unevenly diff er-

entiate even though all AE cells are exposed to the same 

environmental signals from the amniotic fl uid. One of the 

possible mechanisms is ‘lateral inhibition’, which is a type 

of cell-to-cell inter action to regulate cell fate in the 

development of various cell types. Th is could be an 

interesting question for further investigation.

Amniotic epithelial cells possess pluripotency?

In addition to expressing stem cell-specifi c surface markers, 

AE cells express molecular markers of pluri potent stem 

cells: octamer-4 (OCT-4), NANOG, sex deter mining 

region Y-box 2 (SOX-2), Lefty-A, FGF-4, REX-1, and 

terato carcinoma-derived growth factor 1 (TDGF-1) 

(cripto-1). Among those molecular stem cell markers, 

OCT-4 is known as one of the transcription factors that 

play a critical role in maintaining pluri potency and self-

renewal. OCT-4 belongs to the POU family of trans crip-

tional regulators [24-26] and regulates the pluripotency 

of human and mouse ES cells [27]. Expression of OCT-4 

is decreased along with the stem cell diff erentiation and 

the loss of expression leading to diff erentiation [28]. At 

the epiblast stage, OCT-4 con tinues to be expressed as 

long as cells remain undiff er entiated [26]. Th e expression 

of OCT-4 is controlled epigenetically by hypermethy-

lation of the enhancer/promoter region [29].

OCT-4 protein expression is observed in most AE cells. 

Some display nuclear-localized OCT-4, but for the 

majority of AE cells, the expression is cytoplasmic. Th ere 

is concern over the OCT-4 expression in somatic cells 

[30]. OCT-4 exists as two splice variants: OCT-4A and 

Figure 2. Illustration of ‘stem cell left behind’ theory. At 8 days after fertilization, inner cell mass diff erentiates into epiblast and hypoblast. An 

amniotic cavity appears in the middle of the epiblast. As the cavity grows, the spatial segregation allows some amnioblasts to retain epiblast-like 

stem cells. Red stars indicate an amniotic cavity, and pink arrows indicate short-range organogenic signals that could not reach the amnioblasts.
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OCT-4B [31]. Recent studies have suggested that it is the 

OCT-4A isoform that has the ability to confer and sustain 

pluripotency but that the OCT-4B may not be functional 

[32,33]. Lengner and colleagues [34] pointed out that 

published data describing positive results of OCT-4 

expression in somatic stem cells might be erroneous 

because of investigator ignorance of the two isoforms. 

Primers or antibodies that recognize both isoforms might 

be misused to claim functional OCT-4 expression in 

some somatic stem cells. We have confi rmed OCT-4A 

expression in naïve hAE cells by using a commercially 

available primer and probe set (Hs0300511_g1; Applied 

Biosystems, Foster City, CA, USA) that matches OCT-

4A-specifi c exons [17].

Although a number of investigations have provided 

evidence that suggests multipotency of AE cells, the 

pluripotency has not yet been proven. One of the critical 

issues is the diffi  culty to establish clonal expansion from a 

single AE cell, a step that is essential to demonstrate 

pluri potency in vitro. Unlike mouse ES cells, human ES 

cells and mouse epiblast-derived stem (EpiSC) cells are 

intolerant to passaging as single cells. Like EpiSC cells, 

AE cells do not maintain their stem cell characteristics 

well or survive as a single cell in culture. AE cells easily 

fall into the senescence state or diff er entiate into palm-

shaped epithelial cells when cultured at low density. Th e 

teratoma formation assay has been used as a gold 

standard assay to prove pluripotency of ES or iPS cells. 

However, this assay cannot be applied to evaluate AE 

cells. Because of the genetically stable charac ter istics, the 

AE cell does not form a teratoma when injected into 

immunodeffi  cient mice [7,14]. Th e ultimate approach to 

determine pluripotency of AE-derived stem cells is 

generating chimeric animals. If an AE cell that is injected 

into the blastocyst will contribute to all germ layer cells 

in the resulting chimeric embryo, the pluri potency will 

be confi rmed. In 2004, Tamagawa and colleagues [35] 

derived cell lines from human amnion and mixed them 

with mouse early embryonic stem cells to form an 

aggregation chimera. Th e authors succeeded in demon-

strating that the human cells contributed to all three 

primordial germ layer formations in the xenogeneic 

chimera embryo [35]. Although the cell line cells are 

established from a mixed amniotic cell population that 

contains both AE cells and amniotic mesenchymal fi bro-

blasts, this investigation suggested the pluripotency of 

the human amniotic cells. Further investigation will be 

required to clarify which cell population is responsible 

for the pluripotency.

Multipotency of amniotic epithelial cells and the 

therapeutic potential

Although the pluripotency of a single AE cell is not 

clarifi ed yet, AE cells diff erentiate into cells of all three 

germ layers under appropriate culture conditions [7,14]. 

Th e changes of gene expression and cell morphology of 

AE cells in these experiments demonstrated the AE cell 

plasticity that is induced by exposure to exogenous 

growth factors or chemicals. At present, it has not been 

confi rmed whether a single pluripotent amniotic stem 

cell diff erentiates into all three germ layers or whether 

there are various lineage-committed multipotent cells in 

the AE cell population. In spite of this critical question 

from a basic science point of view, it is a secondary con-

cern from the perspective of clinical application. Since it 

is impossible to simultaneously induce the desired 

diff erentiation in 100% of the starting material of stem 

cells, some form of purifi cation process is essential prior 

to using stem cell-derived therapeutic cells in clinical 

application. Th erefore, the most impor tant question from 

a clinical point of view is whether therapeutically useful 

cells can be produced from the hAE cell population. 

Here, we summarize previous works that suggest the 

diff erentiation potential of AE cells and the therapeutic 

potential tested in animal models.

It must be noted that there are developmental and 

anatomical diff erences between rodent and human 

amnion. Rodent amniotic epithelium is clearly derived 

from epiblasts; therefore, the usage of rodent AE cells as 

a model could be appropriate. However, owing to the size 

and anatomical uniqueness, the isolation of AE cells must 

be done very carefully. Recently, Dobreva and colleagues 

[36] focused on the species diff erences of the amnion and 

comprehensively reviewed this topic. Th is review is 

strongly recommended to researchers who plan to con-

duct research with rodent amnion stem cells, including 

amniotic fl uid-derived stem cells.

Ectoderm lineage

Neurodegenerative diseases are among the most suitable 

target diseases for stem cell-based therapies. Since 

neuro degenerative diseases have many pathological 

processes in common, the cell transplantation approach 

could potentially ameliorate the symptoms of several 

distinct neurodegenerative diseases. Th ere are two 

expected mechanisms of cell transplantation. One is the 

diff erentiation potential of the transplanted stem/

progenitor cells to neural cells. Sakuragawa’s group [37], 

pioneers in AE research, demonstrated that cultured AE 

cells express markers of glial and neuronal progenitor 

cells. Our group confi rmed that naïve hAE cells express 

various neural marker genes, including neuron-specifi c 

enolase, neuro fi lament-M, myelin basic protein, 

microtubule-associated protein 2, and glial fi brillary acid 

protein [7]. Under appropriate culture conditions, AE 

cells express or up regu late neuron-specifi c gene expres-

sions such as nestin and glutamic acid descarboxylase. 

Using the adenoviral labeling system, Ishii and colleagues 
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[38] demonstrated that about 20% of hAE cells express 

oligodendrocyte marker genes, myelin basic protein, 

proteolipid protein, and 2’,3’-cyclic nucleotide 3’-phos-

pho diesterase (CNPase). Th e neural diff erentiation capa-

bilities of AE cells were confi rmed by various researchers 

[39,40]. Amazingly, the capabilities were preserved even 

after long-term cryopreservation. Human amniocytes 

that were originally isolated in 1974 adopted neuronal 

morphology and expression of neural genes, including β-

III-tublin, Gap-43, NF-M, TAU, and synaptophysin, after 

more than 30 years [41].

Th e other expectation of cell transplantation for neuro-

degenerative diseases is the ability to secrete functional 

or protective factors from the transplanted cells such as 

dopamine or some other factors, which result in 

protective/trophic eff ects or immunomodulatory eff ects 

[42,43]. For instance, in Parkinson’s disease, there is a loss 

of the dopaminergic neural population in the substantia 

nigra [44]. In clinical settings, it has been shown that 

dopamine-producing tissue (fetal mesen cephalic grafts) 

transplantation could ameliorate the symptoms [45]. hAE 

cells synthesize and release dopamine [46,47]. Th e 

dopamine synthesis responds to supplemented L-DOPA 

(L-3,4-dihydroxy phenyl alanine) concentration in a dose-

dependent manner. Furthermore, transplanted AE cells 

might release neuroprotective factors or induce neuro-

genesis to improve diseased or damaged environments or 

both. It has been shown that hAE cells produce and 

secrete various types of trophic factors such as nerve 

growth factor, neurotrophin-3, and brain-derived neuro-

trophic factor [48-51].

Th is neural diff erentiation and neurotrophic potential 

of hAE cells has been tested in animal models. Trans-

planted hAE cells alleviated Parkinson-like symptoms in 

a dopamine-denervated rat model [52]. In these experi-

ments, the engrafted hAE cells showed paracrine or 

neurotrophic eff ects rather than a contribution via neural 

diff erentiation. However, when rat AE cells were trans-

planted into ischemic hippocampus of adult gerbils, the 

rat AE-derived neuron-like cells were observed after 

5 weeks of the transplantation [53]. Th e neural diff eren-

tiation and the therapeutic eff ect of AE cells were also 

tested in a rat stroke model. Th e transplanted hAE cells 

migrated to the ischemic area and reduced infarct volume 

and improved behavioral function [54]. Recently, Suh 

[55] reported that hAE cell transplantation restored 

memory function in a transgenic mouse model of 

Alzheimer’s disease. Although the mechanism is under 

investigation, these data encourage the clinical applica-

tions of the hAE cells for neurodegenerative diseases.

Endoderm lineage

Two cell types, hepatocytes and insulin-producing pan-

creatic cells, are most desired among the endoderm 

lineage cells. Both cells have been used for cell replace-

ment therapies and their therapeutic concept and effi  ci-

ency have been shown [56-59]. Th e insuffi  cient supply of 

human hepatocytes or beta cells, however, is one of the 

reasons that prevent these promising therapies from 

becoming standard clinical applications. Th us, safe and 

constant supplies of these functional cells are urgently 

required. In addition, stem cell-derived hepatocytes will 

be useful not only for cell replacement therapy (hepato-

cyte transplantation) [57] but also for toxicology and 

drug development [60].

Sakuragawa and colleagues [61] reported that cultured 

hAE cells expressed and produced albumin and α-feto-

protein in vitro and in vivo. Th e hepatic character istics of 

hAE cells were extensively investigated by Takashima and 

colleagues [62]. Our group applied a step-wise exogenous 

growth factor stimulation protocol to induce further 

hepatic maturation in hAE cells [63]. Th e AE-derived 

hepatocyte-like cells expressed late-phase hepatic diff er-

en tiation markers, including various inducible cyto-

hrome P450 genes, which are essential for drug meta-

bolism as functional hepatocytes. Th ese cells were also 

transplanted into immunodefi cient mice, and human α-1 

antitrypsin was detected circulating in the serum of 

recipient mice, and this confi rmed that the engrafted 

hAE cells function as hepatocytes in mouse liver. 

Recently, Manuelpillai and colleagues [64] transplanted 

hAE cells into drug-induced cirrhosis model animals and 

demonstrated the anti-fi brosis eff ect of hAE cells. Th e 

data indicate that the therapeutic eff ect of transplanted 

hAE cells is more likely the immunomodulatory eff ect by 

suppressing infl ammatory activation of hepatic stellate 

cells. On the other hand, the authors demonstrated human 

albumin in mouse sera that might be secreted from 

diff erentiated hAE-derived hepatic cells. Rat amniotic cells 

have been isolated and used to simulate allogeneic cell 

transplantation [65-67]. Th e transplanted rat AE cells 

survived in the liver following allogeneic transplantation 

for at least 30 days [65]. Although the rodent amniotic cell 

property might be diff erent from that of humans, the 

therapeutic effi  ciency of AE cells, together with the basal 

advantages of the placenta-derived stem cells, suggests a 

treatment option for liver diseases.

Several groups demonstrated the pancreatic diff eren-

tia tion potential of hAE cells [7,68,69]. Under appropriate 

culture conditions, pancreatic cell-related genes such as 

PDX-1, PAX-6, NKX2.2, insulin, and glucagon were up-

regulated in vitro [7]. Th e therapeutic potential was also 

demonstrated by the transplantation of cultured hAE 

cells in the spleen of diabetic mice. Th e serum glucose 

levels were normalized for several months after the trans-

plant, suggesting that the transplanted AE cells diff er-

entiated into insulin-producing beta cells [68]. Th is 

fi nding was later confi rmed with comprehensive analyses 
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that demon strated glucose-responsive c-peptide produc-

tion [69]. In vitro diff erentiation and involvement of 

histamine nicotinamide-induced pancreatic diff erentia-

tion were further investigated [70].

In addition to the hepatic and pancreatic diff eren-

tiation, the capability of AE cells diff erentiating into other 

types of endoderm lineage cells has been reported. 

Moodley and colleagues [71] demonstrated that naïve 

human amnion epithelial cells diff erentiate into lung 

epithelium (type II pneumocyte) 2 weeks after parenteral 

injection into a bleomycin-induced lung injury SCID 

(severe combined immunodefi ciency) mice model. Th e 

transplanted hAE cells reduced infl ammation and abro-

gated fi brosis post-lung injury. Moritoki and colleagues 

[72] systemically transplanted EGFP (enhanced green 

fl uorescent protein)-transgenic mice AE cells into 

chemically induced cholestasis mouse model animals. 

Th e EGFP and cholangiocyte marker CK7 double-

positive cells formed a bile duct-like tubular structure in 

the chronic cholestatic mouse liver.

Mesoderm lineage

Because adult cardiomyocytes do not regenerate suffi  -

ciently, there is great interest in fi nding suitable cell 

sources for cellular cardiomyoplasty. hAE cells also 

possess the potential to diff erentiate into cardiac cells [7]. 

Although AE-derived cardiomyocyte-like cells expressed 

cardiac diff erentiation marker genes, immunocyto-

chemistry analysis showed that the expression pattern of 

α-actinin was similar to that of immature cardiomyocytes. 

Th e therapeutic potential was demonstrated by using rat 

amniotic cells and a rat acute infarction model [73]. 

Although transplanted rat amniotic cells dramatically 

improved the cardiac function, only a few transplanted 

cells were diff erentiated into cardiomyocytes (α-actinin-

positive cells). Th e therapeutic eff ect was speculated to 

be due to paracrine or immuno modu latory eff ects of the 

rat amniotic cells. An interesting application of amniotic 

membrane was tested, and the therapeutic effi  ciency was 

demonstrated. Cargnoni and colleagues [74] applied a 

fragment of human amniotic membrane as a cardiac 

patch on an infarction area of a rat heart. Th e post-

ischemic cardiac function was signi fi  cantly improved 

with the amnion patch. Th is investi gation importantly 

demonstrated that secondary cardiac ischemic injury 

could be prevented by humoral factors that are released 

from the amnion. Recently, functional cardiac 

diff erentiation of human amniotic cells was demon-

strated [75]. Th e cardiomyogenic diff erentiation was in-

duced by a co-culture system with murine fetal cardio-

myocytes. Th e structure of sarcomeric α-actinin and the 

spontaneous beating and in vivo contribution of human 

amnion-derived cardiomyocytes were demon strated. 

Stem cell-derived cardiomyocytes are also expected to be 

an important new tool for drug development [60]. Th e in 

vitro functional hAE-derived cardiomyocytes could be a 

cell source for these assays. Further investigation for 

culture condition optimization or direct reprogramming 

will be required along with a defi nition of selection 

markers of functional mature cardiomyocytes. Th e 

studies that demonstrate the diff erentiation capability of 

AE cells into all three germ layer lineages are summarized 

in Table 2.

Advantages of human amniotic epithelial cells for 

clinical applications

From the view of clinicians and patients, the sine qua non 

of clinically applicable stem cells is fi rst, ‘safety’; second, 

‘therapeutic effi  ciency’; and, last, ‘availability/suffi  cient 

quantity’. Several types of stem cells could serve as cell 

sources for cellular therapy. Generally, stem cells are 

classifi ed according to their diff erentiation ability and 

origin. Pluripotent stem cells, such as ES cells and iPS 

cells, are considered to be the most promising stem cells 

because of their tremendous diff erentiation ability. Th e 

‘safety’, however, is always a concern. Th e pluripotency 

comes with genetical instability, which leads to concerns 

for tumorigenicity. Although the ‘therapeutic effi  ciency’ 

is promised, the long-term effi  ciency has not yet been 

proven. Furthermore, the expansion and maintenance to 

obtain a therapeutically suffi  cient number of cells require 

time, eff ort, and cost.

Adult stem cells can be derived from virtually any 

tissue or organ. Most adult stem cells are tissue-specifi c 

lineage-committed multipotent cells. Some adult stem 

cells such as mesenchymal stem cells and hematopoietic 

stem cells are already applied in clinics and showed 

therapeutic effi  ciency, mainly with their immuno modu-

latory property. Th erefore, the clinical applications are 

considerably safe, particularly in the case of autologous 

transplantation.

A similar immunomodulatory property has been 

demonstrated with hAE cells [76-80]. hAE cells inhibited 

allogeneic mixed lymphocyte reactions in a dose-

dependent manner with 66% to 93% inhibition [81]. Most 

of the report demonstrated the immunomodulatory 

eff ect by secretion of suppressive mediators such as TNF-

α, FasL, TRAIL, TGF-β, and MIF. On the other hand, 

Banas and colleagues [12] demon strated that the 

immunomodulatory eff ect of AE cells is dependent on 

cell-to-cell contact with responding T  cells. By using 

non-serum culture conditions, the authors demonstrated 

that hAE cells inhibit peripheral blood mononuclear cell 

proliferative responses to mito gen, alloantigen, and recall 

antigen but preactivated T-cell blast response. Th e results 

suggested that the presence of HLA-G immunological 

cell surface molecules is responsible for the cell-to-cell 

immunosuppressive properties of AE cells. In addition to 
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the HLA-G expres sion [82-84], the expressions of 

comple ment inhibitory proteins, CD59 antigen, decay-

accelerating factor, mem brane attack complex, and Fas 

antigen/CD95/APO1 have been reported as potential 

immunoregulatory factors from hAE cells [85-88]. 

Never theless, further investigation is required to fully 

elucidate the underlying mechanisms of the immuno-

modu latory eff ect of hAE cells.

Importantly, the safety of AE upon transplantation has 

been shown in a clinical setting. hAE cells have been used 

in clinics to correct lysosomal storage disease [89-91]. 

Although the applications were not conducted as a stem 

cell therapy, more than 50 cases of AE cell/tissue trans-

plantations have been performed in various institutes 

[90-92]. No tumor formation has been reported from 

these clinical trials. As it has been described, AE cells are 

clearly non-tumorigenic when transplanted into immuno-

defi cient animals [7,14]. A total of one to two million 

hAE cells was injected into more than 50 individual mice, 

which were observed for a maximum of 516 days. None 

of the AE cell transplants has led to the development of 

tumors by any route of administration in SCID-beige 

mice or Rag-2 knockout mice. In parallel, cytogenetic 

analysis confi rmed genetical stability of cultured AE cells 

[7]. AE cells do not express telomerase reverse trans crip-

tase (TERT) mRNA [7]. A study demonstrated that 

immortalized cells by expression of TERT could exhibit 

some neoplastic transformation toward what seem to be 

cancer stem cells [93]. Missing TERT expression may be 

a safety advantage. Since more than 100 million cells can 

be isolated from one placenta, long-term culture and 

massive replication are not required to use AE cells as a 

cell source. For instance, only half a million cells will be 

suffi  cient to improve the devastating symptoms of 

Parkinson’s disease and Huntington’s disease [94,95]. 

Furthermore, human placenta is a neonatal tissue that 

has less age-acquired and environmental DNA damage. 

Naturally, the neonatal cells should possess a life-long 

Table 2. Diff erentiation potential of amniotic epithelial cells

Lineage Cell type Species First author Reference

Ectoderm Neural progenitor cell Human Sakuragawa [37]

 Dopamine-producing cell Human Kakishita [47,52]

 Neural cell Human Miki [7]

 Oligodendrocyte  Human Ishii [38]

 Neural cell Human Niknejad [40]

 Neural cell Human Woodbury [41]

 Neuronal Rat Okawa [53]

 Neural Rat Marcus [67]

Mesoderm Adipogenic Human Ilancheran [14]

 Chondrogenic Human Ilancheran [14]

 Osteogenic Human Stadler [11]

 Cardiomyogenic Human Miki [7]

 Cardiomyogenic Human Tsuji [75]

 Cardiomyogenic Rat Fujimoto [73]

Endoderm Hepatic Human Miki [7,63]

 Hepatic Human Sakuragawa [61]

 Hepatic Human Takashima [62]

 Hepatic Human Manuelpillai [64]

 Hepatic Rat Nakajima [65]

 Hepatic Rat Takahashi [66]

 Hepatic Rat Marcus [67]

 Insulin-producing cell Human Miki [7]

 Insulin-producing cell Human Wei [68]

 Insulin-producing cell Human Hou [69]

 Insulin-producing cell Human Szukiewicz [70]

 Bile duct Mouse Moritoki [72]

 Pneumocyte Human Moodley [71]
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viability. Given these facts, the AE cell is clearly a safe cell 

for clinical application.

A placenta is discarded after every live birth; objections 

to derive stem cells from placentae are not expected. 

Isolating and using stem cells from discarded human 

tissue are ultimate recycling biotechnologies, which 

would be acceptable in today’s society. Human placenta is 

readily available tissue wherever human society exists. 

Th erefore, there will be no regional disparities for 

placenta-derived stem cell therapies. Current statistics 

indicate that there are over 4 million births and over 1 

million cesarean sections performed in the US every year. 

Th e sheer volume of available placenta tissue leads us to 

the idea of establishing a biobank system for placenta-

derived stem cells. Nakatsuji and colleagues [96] 

estimated that a cell bank with only 30 stem cell lines 

could match the HLA-A, HLA-B, and HLA-DR 

haplotypes in 82.2% of the Japanese population. On the 

basis of these estimations and the theoretical number of 

available placentae, it is clearly feasible to establish a 

biobank that stores human placenta-derived stem cells 

with all HLA haplotypes. Clinically relevant stem cells 

should be easily and reproducibly cultured and 

manipulated. Th e AE cell isolation procedure is relatively 

easy and does not require a special laboratory set-up [4]. 

Th e biobanking system therefore could be established in 

any country and connected as a network to provide all 

HLA types, including race dominant types.

Ethical issues surrounding both embryonic and fetal 

stem cells do not apply to the use of discarded human 

placentae. However, once the therapeutic effi  ciency of 

placenta-derived stem cells is demonstrated, this 

normally discarded medical waste may turn into valuable 

property. Th e cell-acquiring process, cost, and propri-

etary rights will be new ethical issues. A regulatory-

compliant system will be required for cell-acquiring and 

-providing pro cesses. Th e precedent and current 

regulations for the umbilical cord blood cell usage could 

be useful to prepare a guideline for procure ments of 

placenta-derived stem cells [97].

Th e use of this ideal stem cell could take one of two 

directions in future clinical regenerative medicine. One 

direction will be in developing technology to derive 

pluripotent stem cell lines from AE cells, which possess a 

biological potential equivalent to that of ES cells and iPS 

cells. Th is direction, however, may eliminate the AE cell 

advantage that is discussed here. Th e other direction is to 

aim directly at diff erentiation to obtain functional target 

cells. Th e stem cell-derived cell therapy requires a 

selection step prior to the cell application to patients to 

ensure safety and effi  ciency. Th e genetic stability and 

non-tumorigenicity of AE cells will be the advantage for 

this approach. Unlike in ES cells or iPS cells, leakage 

concerns at the selection step will not be a critical issue.

Conclusions

Herein, we reviewed the stem cell characteristics of 

amnion cells, especially AE cells. We introduced a model 

theory that may explain why so many cells with stem cell 

features are present in the amnion. Th e model theory has 

been proposed by several research teams, including ours 

[5,7,14,34]. Previous studies that demonstrate the diff er-

en tiation and therapeutic potential of AE cells were sum-

marized. We described four major reasons why placenta-

derived cells are a signifi cant cell source for clinical 

applications. Th e AE cell meets two important conditions 

that are required for clinically relevant stem cells: safety 

and availability. So far, no stem cells are able to 

diff erentiate into therapeutically useful cell types in vitro, 

or their diff erentiation is not well controlled. As with 

other types of stem cells, further investigations will be 

required to induce AE cells to diff erentiate into thera-

peutically useful cells. Since AE cells are extremely safe 

and show thera peutic effi  ciency in animal models, clinical 

applica tion should be considered in the near future.
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