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Abstract

Introduction: Stem cell transplantation is a promising therapeutic strategy for the treatment of stroke.
Mesenchymal stem cells (MSCs) are a potential cell source for clinical application because they can be easily
obtained and cultivated with a high proliferative capacity. The safety and efficacy of cell therapy depends on the
mode of cell administration. To determine the therapeutic potential of intrathecal administration of MSCs by
lumbar puncture (LP), we administrated human umbilical cord blood-derived MSCs (hUCB-MSCs) intrathecally into
the lumbar spinal cord or intravenously into the tail vein in a rat model of stroke, and then investigated whether
hUCB-MSCs could enter the brain, survive, and improve post-stroke neurological functional recovery.

Methods: hUCB-MSCs (1.0 x 10°%) were administrated three days after stroke induced by occlusion of the middle
cerebral artery. The presence of hUCB-MSCs and their survival and differentiation in the brain tissue of the rats was
examined by immunohistochemistry. Recovery of coordination of movement after administration of hUCB-MSCs
was examined using a Rotarod test and adhesive-removal test on the 71", 14", 21%', and 28" days after ischemia.
The volume of ischemic lesions seven days after the experimental procedure was evaluated using 2-3-5-
triphenyltetrazolium (TTC) staining.

Results: Rats receiving hUCB-MSCs intrathecally by LP had a significantly higher number of migrated cells within
the ischemic area when compared with animals receiving cells intravenously. In addition, many of the cells
administered intrathecally survived and a subset of them expressed mature neural-lineage markers, including the
mature neuron marker NeuN and glial fibrillary acidic protein, typical of astrocytes. Animals that received hUCB-
MSCs had significantly improved motor function and reduced ischemic damage when compared with untreated
control animals. Regardless of the administration route, the group treated with 1 x 10° hUCB-MSCs showed better
neurological recovery, without significant differences between the two treatment groups. Importantly, intrathecal
administration of 5 x 10° hUCB-MSCs significantly reduced ischemic damage, but not in the intravenously treated
group. Furthermore, the cells administered intrathecally survived and migrated into the ischemic area more
extensively, and differentiated significantly into neurons and astrocytes.

Conclusions: Together, these results indicate that intrathecal administration of MSCs by LP may be useful and
feasible for MSCs treatment of brain injuries, such as stroke, or neurodegenerative disorders.
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Introduction

Major human brain and spinal cord injury remain ser-
ious problems that currently have no effective treatment.
Stem cells have the potential to induce neurorestorative
processes, including neurogenesis, angiogenesis, and
synaptic plasticity that are essential for facilitating recov-
ery of neurological function [1]. Therefore, transplanta-
tion of stem cells is a promising therapeutic strategy for
the treatment of many neurological disorders.

Mesenchymal stem cells (MSCs) are highly attractive
candidates for the application of tissue engineering to
regenerate damaged tissue, because they self-renew with
a high proliferative capacity and have the ability to dif-
ferentiate into multiple lineages [2-7] and migrate into
injured organs [8,9]. Moreover, MSCs are not immuno-
genic, and so they do not elicit the proliferative response
of allogeneic lymphocytes in vitro [10].

Different routes of MSC administration have been
used to treat damaged ischemic brain tissue. In many
studies to date, MSCs have been injected directly into
pathological regions [11-13]. When transplanted into
the striatum of rats with ischemia from middle cerebral
artery occlusion (MCAOQO), MSCs are well engrafted and
migrate to the ischemic cortex. In addition, MSCs differ-
entiate into cells that stain positive for neural markers
and significantly improve motor recovery [8,14]. How-
ever, this technique raises the possibility of additional
trauma resulting from transplantation surgery, leading
to a reduced survival of grafted cells. Moreover, this sur-
gical procedure is often impractical for patients whose
condition is clinically severe [15]. Furthermore, direct
parenchymal cell transplantation does not allow delivery
of multiple doses of therapeutic cells.

Intravenous infusion of cells is comparatively the least
invasive approach and the intravenous route is well tol-
erated [16]. Because there is long-term functional
improvement following intravenous MSC injection in
animal models of stroke, MSCs are now widely adminis-
tered via this route [8,17]. The intravenous infusion of
MSCs might be a feasible and safe mode for MSC treat-
ment of stroke patients. However, many cells are distrib-
uted widely throughout the body, such as in the liver,
the spleen, and the kidneys [18,19]. These concerns
were addressed in a study that involved intravenous cell
transplantation [20]. The authors injected MSCs intrave-
nously following experimental traumatic brain injury,
but could only demonstrate the presence of a few cells
at the injury site.

The development of a safe and effective strategy for
cell transplantation has been a major clinical challenge
in cell therapy. Therefore, we have been investigating
alternative, effective, and clinically applicable strategies
for MSC delivery in a rat model of cerebral infarction.
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Some studies have shown that intrathecal delivery by
lumbar puncture (LP) is an extremely attractive means
of delivery of chemicals into the cerebrospinal fluid
(CSF) and that this route is well tolerated [16]. However,
little data are available regarding the delivery of cells
intrathecally by LP.

To determine the possibility of delivering human
umbilical cord blood-derived MSCs (hUCB-MSCs)
intrathecally by LP in an MCAO model of stroke in the
rat, the present study investigated the therapeutic effects
and grafts of intrathecally delivered hUCB-MSCs when
compared with intravenously delivered hUCB-MSCs.

Materials and methods

Culture of hUCB-MSCs

Human UCB samples were collected from the umbilical
vein of deliveries with informed maternal consent. The
16-gauge needle of a UCB collection bag containing
44.8 ml of CPDA-1 anticoagulant (Greencross, Yongin,
Korea) was inserted into the umbilical vein and UCBs
were collected by gravity. Isolation and expansion of
UCB-MSCs was conducted as previously reported [21].
In brief, mononuclear cells were isolated by centrifuga-
tion in a Ficoll-Hypaque gradient (density 1.077 g/cm3,
Sigma, St Louis, MO, USA). The separated mononuclear
cells were washed, suspended in a-minimum essential
medium (a-MEM; Gibco BRL, Carlsbad, CA, USA), sup-
plemented with 10% fetal bovine serum (FBS; HyClone,
Logan, UT, USA), and seeded at a concentration of 5 x
10° cells/cm?. Cultures were maintained at 37°C in a
humidified atmosphere containing 5% CO, with a
change of culture medium twice a week. UCB-derived
mononuclear cells were set in culture, and the onset of
fibroblast-like adherent cells was observed. One to three
weeks later, when the monolayer of MSC colonies
reached 80% confluence, cells were trypsinized (0.25%
trypsin, HyClone), washed, resuspended in culture med-
ium (a-MEM supplemented with 10% FBS) and subcul-
tured at a concentration of 5 x 10* cells/cm® MSCs of
each UCB harvest were expanded ex vivo by successive
subcultivation under the same condition. The fifth to
eighth passage cells of UCB harvests with more than
1,000-fold expanding capacity were used for the experi-
mental work. Ethical approval for the use of hUCB-
MSCs was obtained from the Institutional Review Board
of Catholic University Medical Center.

Ischemic animal model and experimental groups

All animal protocols were approved by the Institutional
Animal Care and Use Committee of the Catholic Uni-
versity Medical School. Anesthesia of adult male Spra-
gue Dawley rats weighing 250 to 270 g was induced
with 5% isoflurane in 70% nitrous oxide and 30% oxygen
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using an induction chamber, and anesthesia was main-
tained by supplying 1.5% isoflurane using a face mask.
Rectal temperature was maintained at 37°C throughout
the surgical procedure, as monitored by an electronic
temperature controller linked to a heating pad (FHC,
Bowdoinham, ME, USA). Transient MCAO was induced
as previously described by [22], with a slight modifica-
tion. Briefly, the right common carotid artery (CCA),
external carotid artery (ECA), and internal carotid artery
(ICA) were exposed through a ventral midline incision.
A 4-0 nylon monofilament suture with a rounded tip
was introduced into the CCA lumen and gently
advanced into the ICA until it blocked the bifurcating
origin of the MCA. Two hours after occlusion, animals
were reanesthetized and reperfused by withdrawing the
suture until its tip cleared the lumen of the CCA.

All experiments were randomized. Seventy-four rats
that underwent a transient MCAQO were directly used to
obtain the final data shown in this study: intrathecal
injection of phosphate buffered saline (PBS) into CSF by
LP (n = 12), intravenous injection of PBS into tail vein
(n = 12), intrathecal injection of hUCB-MSCs (n = 25),
and intravenous injection of hUCB-MSCs (n = 25).

Cell transplantation

hUCB-MSCs were injected intrathecally or intravenously
at three days after MCAO. For intrathecal injection, LP
was performed after establishment of isoflurane (inhala-
tion) anesthesia. Briefly, each rat was anesthetized and
placed on an operating surface that flexed the animal’s
back. A small (1 cm) longitudinal incision was made
over the L3 to L5 spinous processes and the skin was
retracted. A human neonatal lumbar puncture needle
(25 gauge; Becton Dickinson, Franklin Lakes, NJ, USA)
was advanced into the spinal canal at the L3 to L4 or
L4 to L5 level. Proper placement of the needle in the
lumbar subdural space was indicated by three signs: loss
of resistance at the time of entry (tentative sign), tail
flick (more definitive sign), and presence of CSF in the
needle hub (most definitive sign). Once correct needle
placement was confirmed, the CSF present in the needle
hub was aspirated using a micropipette, and hUCB-
MSCs (1 x 10°) diluted in 20 pl PBS were injected into
the CSF over 30 s. The skin was closed by stapling and
the animal was returned to its cage. The entire proce-
dure took three to five minutes. For intravenous injec-
tion, hUCB-MSCs (1 x 10°) diluted in 700 pl PBS were
injected slowly for five minutes via an intravenous can-
nula situated in the tail vein.

Immunohistochemistry and quantification

Rat brains were perfused with PBS followed by 4% par-
aformaldehyde under deep anesthesia at a specific time
point after lumbar injection of hUCB-MSCs. The
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excised brains were post-fixed overnight and then equili-
brated in PBS containing 30% sucrose for two days.
Fixed brains were embedded, snap-frozen in liquid
nitrogen, and stored at -70°C until use. Tissues were
cryosectioned at 14 pm in the coronal plane and then
stained with primary antibodies for neuronal nuclei
(NeuN) (Chemicon, Temecula, CA, USA), human nuclei
(Chemicon), and glial acidic fibrillar protein (GFAP;
Dako, Glostrup, Denmark) at 4°C overnight. The sec-
tions were incubated with Alexa Fluor 488 or 546-con-
jugated anti-IgG secondary antibodies (Molecular
Probes, Eugene, OR) and counterstained with 4’,6-diami-
dino-2-phenylindole (DAPI; Sigma-Aldrich, St. Louis,
MO). To detect apoptotic activity, tissues were stained
using a terminal deoxyribonucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) assay kit
(Roche, Basel, Switzerland) developed with Cy3-conju-
gated streptavidin (Jackson ImmunoResearch Labora-
tories, Bar Harbor, ME, USA). Fluorescent images were
acquired using a Zeiss LSM510 confocal microscope
(Carl Zeiss, Jena, Germany).

To determine graft survival semiquantitatively, every
fifth coronal section (15 pm) per animal was prepared
and counting was performed on three randomly selected
non-overlapping per section. For each section under
analysis, the region of interest (ROI) was selected within
the ischemic territory, and the measurement was made
in a predefined field (300 pm x 300 um). Total numbers
of positive cells for the ischemic hemisphere were then
obtained by multiplying by three. All images were made
using an excitation filter under reflected light fluores-
cence microscopy (x 200 oil objective) and transferred
to a computer equipped with MetaMorph software ver-
sion 7.5 (Molecular Devices, Downingtown, PA, USA).

Motor function evaluation

Animals were pretrained for one week prior to a motor
test using a Rotarod cylinder (IITC Life Science, Wood-
land Hills, CA, USA). The cylinder was accelerated from
4 to 40 rpm within 5 minutes, and the cutoff time was
300 s. For adhesive removal tests, square dots of adhe-
sive-backed paper (120) were used as bilateral tactile
stimuli occupying the distal-radial region on the wrist of
each forelimb. Animals were given three trials with a
cutoff time of 180 s. The data are presented as the
mean time to remove the left dot.

Staining and quantitative analysis of infarct volume

Seven days after the administration of cells, all rats (n =
5 for each group) were deeply anesthetized with isoflur-
ane. Transcardiac perfusion was performed with saline.
The brain of each rat was immediately removed and
sectioned into four equally spaced (2 mm) coronal
blocks using a rodent brain matrix. These sections were
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stained with 2% 2,3,5-triphenylterazolium (TTC) with
normal saline for 30 minutes at 37°C. The unstained
area was considered to be the infarcted area [23]. The
total infarct volume for each slice was calculated by
summation of infarcted areas of all brain slices, using
MetaMorph software (Molecular Devices).

Statistical analysis

All data are expressed as mean + standard error of the
mean. The significance of differences between test con-
ditions was assessed using Student’s ¢-test. Probability
values less than .05 were considered as significant. Beha-
vior results were analyzed using repeated measures ana-
lysis of variance with independent variables of treatment
groups and days of testing, followed by Tukey’s post hoc
test for multiple comparisons at each treatment group.

Results

Homing of transplanted hUCB-MSCs toward the ischemic

brain

To examine the feasibility of intrathecal administration
by LP for transplanting hUCB-MSCs in rats with cere-
bral ischemia, we tested whether intrathecally intro-
duced hUCB-MSCs by LP would migrate and engraft
into ischemic brain. Flow cytometric analysis of hUCB-
MSCs indicated this cell surface phenotype (Additional
file 1, Figure S1). A characteristic feature of MSCs was a
CD457, CD44", C90", SH2* (CD105), and SH3" (CD73)
cell surface phenotype.

After inducing ischemic stroke, 1 x 10° hUCB-MSCs
were injected intrathecally or intravenously and then
migration of these cells was observed at 7 and 28 days
in the ischemic brain (Figure 1). We identified hUCB-
MSCs with anti-human nuclei antibody (hNA). A signif-
icant number of cells were found in the peri-infarct
zone of the ischemic hemisphere in animals after
intrathecal administration compared with animals after
intravenous administration. However, administered
hUCB-MSCs were not observed in the intact contralat-
eral hemisphere after either intrathecal or intravenous
delivery (data not shown).

Survival of transplanted hUCB-MSCs in vivo

Insufficient graft survival and efficacy is a major obstacle
in the use of MSCs for therapy. When transplanted into
the striatum or tail vein after MCAO, MSCs survived
and migrated to the ischemic site, but only a few of the
transplanted cells survived and retained their compe-
tency [11,12,24-26].

To assess whether hUCB-MSCs delivered intrathecally
by LP would survive, a TUNEL assay was used to evalu-
ate apoptosis of grafted cells in ischemic animals. One
week after cell administration, 28% + 4.4% of hNA-posi-
tive cells were stained for TUNEL (in the penumbra
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regions such as the ischemic boundary zone in animals
administered hUCB-MSCs intrathecally (Figure 2a)).
However, 39% + 5.1% of hNA-positive cells were stained
in animals in which they were administered intrave-
nously (Figure 2b), which indicates that intrathecal
administration of hUCB-MSCs is valuable for efficient
cell delivery into the ischemic animals.

Phenotype of transplanted hUCB-MSCs in vivo
Transdifferentiation of MSCs into cells of neural lineage
has been reported [5-7]. To test the in vivo transdiffer-
entiation of hUCB-MSCs administered intrathecally or
intravenously, the neuronal marker NeuN and the astro-
cyte marker GFAP were evaluated at four weeks in the
peri-infarct tissue of treated animals (Figure 3). hUCB-
MSCs survived for at least four weeks and a subset of
the grafted cells expressed NeuN and GFAP in the ipsi-
lateral ischemic boundary zone in animals in which cells
were administered intrathecally. Furthermore, a small
subset of the grafted cells was immunopositive for CD73
and CD105, which are markers of MSCs for the state of
non-differentiated cells (Additional file 2, Figure S2).

Therapeutic effects of transplanted hUCB-MSCs
We tested whether hUCB-MSCs administered intrathe-
cally or intravenously enhanced neurological dysfunc-
tion. After treatment with 1 x 10° cells, motor function
was analyzed using a Rotarod apparatus and an adhesive
removal test in each group. One day after MCAO, but
prior to intrathecal or intravenous administration of
hUCB-MSCs, there was no difference in neurological
functional assessment between the two ischemic groups.
PBS-injected animals spontaneously recovered to a lim-
ited degree over 21 days. Animals that received hUCB-
MSCs intrathecally or intravenously exhibited higher
recoveries over 21 days than PBS treated animals and
continued to recover for up to 28 days. At 28 days after
injection, there were significant differences (P < 0.05)
between hUCB-MSCs (90.35% + 4.48%) and PBS
(78.83% * 3.22%) administered groups intrathecally in
the Rotarod test and adhesive removal test scores (23.6
+ 10.57 vs. 49.77 + 10.1, P < 0.05). There were also sig-
nificant differences between hUCB-MSCs and PBS
administered groups intravenously in the Rotarod test
(87.76% + 4.5% vs. 75.89% * 0.3%, P < 0.05) and adhe-
sive removal test scores (25.58 + 7.6 vs. 51.65 + 9.1, P <
0.05) (Figure 4a, b). However, there were no significant
differences between the intrathecal and intravenous
injection groups. Animals that received hUCB-MSCs
showed good neurological recovery independently of the
administration route, intrathecal or intravenous, without
significant differences in neurological score.

The volume of ischemic lesions at seven days after the
experimental procedure was evaluated using TTC
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Figure 1 Migration of administered hUCB-MSCs into the ischemic brain. (a) Representative hematoxylin and eosin staining of coronal
sections from ischemic brain. (b) At 7 days and (c) 28 days after 1 x 10° hUCB-MSC administration, hUCB-MSCs were identified by the staining
with human nuclei antibody (hNA, green) and the numbers of hNA-positive cells in the ischemic boundary zone (IBZ) of Ipsi hemisphere are
illustrated (n = 4 per treatment group). (d) Data are presented as mean numbers of hNA-positive cells + SD. Note that the numbers of hNA-
positive cells were decreased in animals after intravenous administration compared with animals after intrathecal administration. Intrathecally
treated groups showed significant differences from the intravenously treated groups in the IBZ (analysis of variance; *P < 0.05). Nuclei were

hNA
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staining. Administration of 1 x 10° hUCB-MSCs
intrathecally (21.93% + 2.85% vs. 51.68% + 2.43%) or
intravenously (23.22% + 5.67% vs. 50.26% + 4.18%) sig-
nificantly reduced (P < 0.05) the infarction volume when
compared with the PBS controls. There was no signifi-
cant difference between the intravenous or intrathecal
hUCB-MSCs treatment (Figure 4c).

Importantly, intrathecal administration of 5 x 10°
hUCB-MSC:s significantly the infarction volume when
compared with the PBS controls (27.35% + 3.17% vs.
51.68% + 2.43%, P < 0.05). In addition, there were no
significant differences in infarction volume between
intrathecal injection of 5 x 10°> and 1 x 10° hUCB-
MSCs. However, intravenous administration of 5 x 10°
hUCB-MSCs showed no effect on the infarction volume
when compared with the PBS controls (50.52% + 1.92%
vs. 50.26% + 4.18%). No effect on the infarction volume

was seen with 1 x 10° hUCB-MSCs in either treatment
group (intrathecal, 51.84% * 4.15%; intravenous, 52.58%
+ 5.8%) (Figure 5).

Homing and survival of low-dose hUCB-MSCs in the
ischemic brain
After administration of 5 x 10> hUCB-MSCs intrathe-
cally or intravenously, migrated cells were observed at 7
and 28 days in the ischemic brain (Figure 6a-c). Many
of the cells were found at seven days in the peri-infarct
zone of the ischemic hemisphere in animals after
intrathecal administration. However, a small number of
cells were detected within the ischemic brain after intra-
venous administration.

To assess the survival of transplanted cells, a TUNEL
assay was used to evaluate apoptosis of grafted cells in
ischemic animals. One week after cell administration,
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Figure 2 hUCB-MSCs undergoing apoptotic cell death in the ischemic brain. (a) At seven days after 1 x 10° hUCB-MSC administration,
hUCB-MSCs undergoing apoptotic cell death were measured by TUNEL staining (n = 5 per treatment group). hUCB-MSCs were identified by the
staining with human nuclei antibody (WNA, green). The numbers of hNA-TUNEL double-positive cells in the ipsilateral ischemic boundary zone
(1BZ) are illustrated. (b) Quantitative analysis of hNA-TUNEL double-positive cells in the ipsilateral IBZ. Data from five animals are presented as
mean values + SD. There were significantly more hNA-TUNEL double-positive cells in animals after intravenous administration (analysis of
variance; *P < 0.05). Nuclei were counterstained with DAPI (blue). Scale bar = 20 um.
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Figure 3 In vivo differentiation of hUCB-MSCs in the ischemic brain. Confocal images of the cells at four weeks after 1 x 10° hUCB-MSC
administration in the ischemic animal models. hUCB-MSCs were identified by the staining with human nuclei antibody (hNA, green). hUCB-MSCs
survived for at least four weeks and a subset of the grafted cells expressed (@) NeuN and (b) GFAP in the ipsilateral ischemic boundary zone
(IBZ). These markers were immunolabeled with red fluorescence. Quantitative analysis of (c) hNA-NeuN and (d) hNA-GFAP double-positive cells
in the ipsilateral IBZ. Data are presented as mean values + SD. Nuclei were counterstained with DAPI (bluge). Scale bar, 20 pum.
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21% + 6.2% of hNA-positive cells were stained for
TUNEL (in the penumbra regions such as the ischemic
boundary zone in animals administered hUCB-MSCs
intrathecally (Figure 6d)). However, 44% + 5.1% of
hNA-positive cells were stained in animals in which
they were administered intravenously (Figure 6e).

In vivo differentiation of low-dose hUCB-MSCs in the
ischemic brain

Immunolabeling showed that some of the grafted cells
were positive for staining with the anti-Neun and GFAP
antibodies in the ipsilateral ischemic boundary zone
after intrathecal administration of hUCB-MSCs (Figure
7). Compared with intrathecal administration, a small
subset of grafted cells expressed NeuN and GFAP.

Discussion
Cell-based strategies are of particular interest in neurolo-
gical conditions because mature brains have limited capa-
city for self-repair. MSCs have great potential as
therapeutic agents for stroke treatment, because they are
easily obtained and can be expanded rapidly ex vivo for
transplantation [2,27]. MSCs transplanted into an
ischemic region of the rat brain are capable of differentia-
tion into neural cells and promote functional improve-
ment [11,24,28]. Furthermore, MSCs can improve
neurological dysfunctions in stroke patients [29]. How-
ever, it is often argued that stem cells might be used to
replace lost neurons and restore functions [30].
hUCB-MSCs have proven to be more advantageous
than bone marrow-derived MSCs in terms of cell
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Figure 4 Therapeutic effects of hUCB-MSC administration on recovery in the ischemic animal model. Performance in the (a) Rotarod and
(b) adhesive removal tests from 1 to 28 days after ischemia. The data were collected from seven animals per group and are presented as mean

values + SD. (c) Brain slices were stained with TTC at seven days after PBS or 1 X 10% hUCB-MSC administration to visualize lesions. (d) The data
were collected from five animals per group and are presented as mean relative infarct volume + SD. Statistically significant differences between

the groups were determined by analysis of variance (*P < 0.05 compared with the PBS injected group intrathecally; #P < 0.05 compared with

the PBS injected group intravenously).

procurement, storage, and transplantation [31]. More-
over, the number and differentiation ability of bone
marrow-derived MSCs significantly decrease with age
[32]. These characteristics make hUCB-MSCs potent
candidates for the clinical application of allogenic MSC-
based therapies.

The route of cell administration is a key point in stem
cell transplantation. The need for development of effec-
tive cell delivery methods to enhance the therapeutic
efficacy of stem cells is pressing because the safety and
efficacy of cell therapy depend on the mode of cell
administration. Several studies reported functional
recovery in animal stroke models and in humans using
different modes of delivery [33-35]. However, the opti-
mal delivery route for cell transplantation after stroke is
not yet well defined.

The present results demonstrate that administration of
allogenic hUCB-MSCs intrathecally by LP is a valuable
transplantation method for efficient cell delivery and

therapy in a rat stroke model. Intravenous administra-
tion of 1 x 10° hUCB-MSCs is equally effective for
improving neurological recovery and decreasing cerebral
damage in ischemic stroke (Figure 4). A most important
finding of the present study is that 5 x 10> hUCB-MSCs
administered intrathecally are significantly effective for
decreasing ischemic infarction volume, but not in the
intravenous administration group (Figure 5). A relation-
ship between cell dose and therapeutic effect has been
identified by Chen and colleagues [12]. Rats intrave-
nously infused with 3 x 10° MSCs after MCAO showed
better neurological recovery than animals infused with 1
x 10° MSCs. Rats intravenously infused with 1 x 10°
MSCs after MCAO showed improved neurological
recovery, but rats administered 3 x 10° MSCs demon-
strated better neurological recovery than animals infused
with 1 x 10° MSCs. Although 1 or 3 x 10° cells in ani-
mal experiments are acceptable for therapeutic effect,
extrapolation of these doses to humans may be difficult
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Figure 5 Therapeutic effects of low-dose hUCB-MSC administration on infarction volume in the ischemic animal model. (a) Brain slices
were stained with TTC at seven days after 5 x 10° hUCB-MSC administration. The images show the lesion volume in hUCB-MSCs treated groups.
(b) The data were collected from five animals per group and are presented as mean relative infarct volume + SD. Statistically significant
differences between the groups were determined by analysis of variance (*P < 0.05 compared with the PBS injected group intrathecally; #P <
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because of the large number of cells needed. This diffi-
culty in converting the amount into a human dose will
limit clinical trials. MSCs therapy for stroke patients has
been performed using 1 x 10® cells [29,36]. A potential
therapeutic effect at an acceptable cell dose is important
in human therapy.

Homing is the process by which cells migrate to, and
engraft in, the tissue in which they will exert func-
tional effects [37,38]. Capacity for migration towards
an injured region is an important characteristic of
MSCs. When transplanted into the striatum or tail
vein after MCAO, MSCs survived and migrated to the
ischemic site, where they restored damaged neural
cells in adult rodents [11,12,24]. The present study
indicates that both administration routes were equally
effective in neurological deficit recovery, but the intra-
venous administration did not produce MSC migration
to the lesion zone (Figure 1). In addition, many more
grafted cells survived in animals after intrathecal

administration when compared with animals after
intravenous administration (Figure 2). Our outcome
suggests that it may not be necessary for the stem cells
to successfully migrate and graft onto the lesion site to
obtain good functional results.

Several factors are probably influential in achieving
the benefits of MSCs in the ischemic brain, and a pos-
sible mechanism that could explain the improvement
in functional recovery of models is believed to be asso-
ciated with the differentiation of transplanted MSCs
into a neural cell lineage. Numerous studies have
reported that transplanted MSCs in animals with
ischemic stroke expressed the neural cell lineage mar-
kers, such as the neuronal-specific protein NeuN,
microtubule-associated protein 2 (MAP-2), and the
astrocytic marker GFAP [11,24,28]. The neural differ-
entiation capacity of MSCs in vitro and in vivo has
been intensively explored; previous studies in our
laboratory have also demonstrated that MSCs
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Figure 6 Migration and survival of low-dose hUCB-MSCs in the ischemic brain. (a) At 7 days and (b) 28 days after 5 x 10° hUCB-MSC
administration, hUCB-MSCs were identified by the staining with human nuclei antibody (hNA, green) and the numbers of hNA-positive cells in
the ischemic boundary zone (IB2) of Ipsi hemisphere are illustrated (n = 5 per treatment group). (c) Data are presented as mean numbers of
hNA-positive cells + SD. Note that the numbers of hNA-positive cells were decreased in animals after intravenous administration compared with
animals after intrathecal administration. Intrathecally treated groups showed significant differences from the intravenously treated groups in the
IBZ. (d) At seven days after 5 x 10° hUCB-MSC administration, hUCB-MSCs undergoing apoptotic cell death were measured by TUNEL staining.
The numbers of hNA-TUNEL double-positive cells in the ipsilateral IBZ are illustrated. (e) Quantitative analysis of hNA-TUNEL double-positive cells
in the ipsilateral IBZ. Data from five animals are presented as mean values + SD. There were significantly more hNA-TUNEL double-positive cells
in animals after intravenous administration (analysis of variance; *P < 0.05). Nuclei were counterstained with DAPI (blue). Scale bar = 20 um.
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differentiate into neurons or glial cells in vitro under
special experimental conditions [39,40]. In the present
study, hUCB-MSCs delivered by LP grafted efficiently
and differentiated into neurons and glial cells (Figures
3 and 7), supporting the hypothesis that transdifferen-
tiation of transplanted MSCs is influential in achieving
the benefits of MSCs in the ischemic brain.

On the basis of these results, both intrathecal and
intravenous routes of administration of 1 x 10° cells
have demonstrated similar effectiveness for promoting

neurological recovery in ischemic stroke regardless of
migration and grafting differences within the ischemic
brain. However, intrathecal administration was signifi-
cantly more effective for the 5 x 10° cell dose in redu-
cing the ischemic damage. Our study indicates that
intrathecal delivery of hUCB-MSCs by LP is an attrac-
tive and potentially successful method by which to treat
stroke damage and may be a clinically feasible means of
providing less invasive and repeatable transplantation
therapy.
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Nuclei were counterstained with DAPI (blue). Scale bar = 20 um.
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Figure 7 In vivo differentiation of low-dose hUCB-MSCs in the ischemic brain. Confocal images of the cells at four weeks after 5 x 10°
hUCB-MSC administration in the ischemic animal models. hUCB-MSCs were identified by the staining with human nuclei antibody (hNA, green).
A subset of the grafted cells expressed (a) NeuN and (b) GFAP in the ipsilateral ischemic boundary zone. These markers were immunolabeled
with red fluorescence. Quantitative analysis of () hNA-NeuN and (d) hNA-GFAP double-positive cells in the ipsilateral IBZ. Data are presented as
mean values + SD. There were significantly more double-positive cells in animals after intrathecal administration (analysis of variance; *P < 0.05).

Conclusions

Therapy with hUCB-MSCs is a potential treatment for
ischemic stroke. Intrathecal administration of 1 x 10°
hUCB-MSCs (high dose) and 5 x 10° cells (low dose) by
LP demonstrated significant effects on recovery of
ischemic damage. Therefore, intrathecal delivery of
MSCs by LP may be a useful and feasible mode of admin-
istration for clinical treatment of brain injuries, such as
stroke, or neurodegenerative disorders with MSCs.

Additional material

Additional file 1: Figure S1. Surface antigen characteristic of hUCB-
MSCs. Immunophenotyping of hUCB-MSCs. Cells at passage 6 were
labeled with antibodies against the indicated antigens and then analyzed
by flow cytometry. The results are representative of at least three
independent experiments.

Additional file 2: Figure S2. Phenotype of transplanted hUCB-MSCs
in vivo. Confocal images of the cells at four weeks after 1 x 10° hUCB-
MSC administration in the ischemic animal models. hUCB-MSCs were

identified by the staining with human nuclei antibody (hNA, green). A
small subset of the grafted cells expressed (upper panel) CD73 and
(bottom panel) CD105 in the ipsilateral ischemic boundary zone. These
markers were immunolabeled with red fluorescence. Nuclei were
counterstained with DAPI (blue). Scale bar: 20 um.
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