Skip to main content
Fig. 4 | Stem Cell Research & Therapy

Fig. 4

From: Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation

Fig. 4

mRNA expressions, capillary density/blood flow in the hind limb and intra-epidermal nerve fiber density. a mRNA expression in the hind limb skeletal muscles. Four weeks after the transplantation of dental pulp stem cells (DPSCs) (the duration of diabetes was 52 weeks), the mRNA expression levels of nerve growth factor (NGF), neurotrophin 3 (NT-3), and basic fibroblast growth factor (bFGF) in the hind limb skeletal muscles were evaluated by real-time quantitative PCR. The results are means ± SEM; n = 7. *P < 0.05, vs. vehicle-injected side of normal rats; P < 0.05, vs. vehicle-injected side of diabetic rats. b The capillary endothelial cells were stained with the anti-von Willebrand factor (vWF) polyclonal antibody. Quantitative analyses for the capillary/muscle fiber ratio of the vehicle-injected and DPSC-transplanted side of skeletal muscles in normal and diabetic rats. The results are means ± SEM. **P < 0.01, vs. vehicle-injected side of normal rats; †† P < 0.01, vs. vehicle-injected side of diabetic rats. c Representative LDPI of the hind limb blood flow of rats. DPSC transplantation increased blood flow (yellow to red color) in the DPSC-injected side of the hind limb of diabetic rats. d Computer-assisted quantitative analyses of hind limb blood flow in normal and diabetic rats. e Intra-epidermal nerve fiber density (IENFD) was evident in both the epidermis and dermis of foot skin by fluorescent imaging for PGP9.5. Intra-epidermal nerve fiber profiles were counted blindly by three independent investigators and the average values were used. The results are means ± SEM. *P < 0.05, vs. vehicle-injected side of normal rats; †† P < 0.01, vs. vehicle-injected side of diabetic rats; n = 7

Back to article page