Tate DG, Forchheimer MB, Karana-Zebari D, Chiodo AE, Kendall Thomas JY. Depression and pain among inpatients with spinal cord injury and spinal cord disease: differences in symptoms and neurological function. Disabil Rehabil. 2013;35(14):1204–12.
Article
PubMed
Google Scholar
Kumru H, Soler D, Vidal J, Navarro X, Tormos J, Pascual‐Leone A, et al. The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: an evoked potentials and quantitative thermal testing study. Eur J Pain. 2013;17(1):55–66.
Article
CAS
PubMed
Google Scholar
Sharp K, Boroujerdi A, Steward O, Luo ZD. A rat chronic pain model of spinal cord contusion injury. Methods Mol Biol (Clifton, NJ). 2012;851:195–203.
Article
CAS
Google Scholar
Finnerup NB. Pain in patients with spinal cord injury. Pain. 2013;154:S71-6.
Finnerup NB, Otto M, McQuay HJ. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain. 2005;118:289–305.
Article
CAS
PubMed
Google Scholar
Backonja MM, Irving GA, Argoff C. Rational multidrug therapy in the treatment of neuropathic pain. Curr Pain Headache Rep. 2006;10:34–8.
Article
PubMed
Google Scholar
Marineo G, Iorno V, Gandini C, Moschini V, Smith TJ. Scrambler therapy may relieve chronic neuropathic pain more effectively than guideline-based drug management: results of a pilot, randomized, controlled trial. J Pain Symptom Manag. 2012;43(1):87–95.
Article
Google Scholar
Hama A, Sagen J. Behavioral characterization and effect of clinical drugs in a rat model of pain following spinal cord compression. Brain Res. 2007;1185:117–28.
Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nature Rev Neurol. 2010;6(7):363–72.
Article
Google Scholar
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release. 2015;219:141–54.
Article
CAS
PubMed
Google Scholar
Yazdani SO, Pedram M, Hafizi M, Kabiri M, Soleimani M, Dehghan MM et al. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell. 2012;44(4):205-13.
Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, et al. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011;28(6):961–72.
Article
PubMed
PubMed Central
Google Scholar
Mark Richardson R, Broaddus WC, Holloway KL, Fillmore HL. Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res. 2005;1032(1):11–22.
Article
PubMed
Google Scholar
Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F. The effect of bone marrow-derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplant. 2015;21(9):1537–44. doi:10.1016/j.bbmt.2015.05.008.
Article
PubMed
Google Scholar
Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23(1):70–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M. Stem cell-based therapy for spinal cord injury. Cell Transplant. 2013;22(8):1309–23.
Article
PubMed
Google Scholar
Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F. Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29(1):11–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.
Article
CAS
PubMed
Google Scholar
Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci. 2004;117(23):5655–64.
Article
CAS
PubMed
Google Scholar
Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10(3):199–206.
Article
CAS
PubMed
Google Scholar
Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.
Article
CAS
PubMed
Google Scholar
Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue‐derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29.
Article
PubMed
Google Scholar
Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, et al. Bone marrow‐derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25(5):1307–16.
Article
CAS
PubMed
Google Scholar
Cho KJ, Trzaska KA, Greco SJ, McArdle J, Wang FS, Ye JH, et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin‐1α. Stem Cells. 2005;23(3):383–91.
Article
CAS
PubMed
Google Scholar
Lu L-L, Liu Y-j, Yang S-G, Zhao Q-J, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017–26.
CAS
PubMed
Google Scholar
Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006;30(9):681–7.
Article
CAS
PubMed
Google Scholar
Scherjon SA, Kleijburg‐van der Keur C, de Groot‐Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.
Article
PubMed
Google Scholar
Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332(2):370–9.
Article
CAS
PubMed
Google Scholar
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells. 2014;6(2):120–33. doi:10.4252/wjsc.v6.i2.120.
Article
PubMed
PubMed Central
Google Scholar
Fan C-G, Q-j Z, J-r Z. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep. 2010;7(1):195–207. doi:10.1007/s12015-010-9168-8.
Article
Google Scholar
Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, et al. Immunogenicity of umbilical cord tissue–derived cells. Blood. 2008;111(1):430–8.
Article
CAS
PubMed
Google Scholar
Sarugaser R, Ennis J, Stanford WL, Davies JE. Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol. 2009;482:269–79. doi:10.1007/978-1-59745-060-7_17.
Article
CAS
PubMed
Google Scholar
Karaoz E, Aksoy A, Ayhan S, Sarıboyacı AE, Kaymaz F, Kasap M. Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol. 2009;132(5):533–46.
Article
CAS
PubMed
Google Scholar
Rivlin A, Tator C. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol. 1978;10(1):38–43.
CAS
PubMed
Google Scholar
Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine. 2007;32(25):2853–9. doi:10.1097/BRS.0b013e31815b7e6b.
Article
PubMed
Google Scholar
von Euler M, Seiger Å, Sundström E. Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations. Exp Neurol. 1997;145(2):502–10.
Article
Google Scholar
Bruce JC, Oatway MA, Weaver LC. Chronic pain after clip-compression injury of the rat spinal cord. Exp Neurol. 2002;178(1):33–48. http://dx.doi.org/10.1006/exnr.2002.8026.
Article
PubMed
Google Scholar
Dolan EJ, Tator CH. A new method for testing the force of clips for aneurysms or experimental spinal cord compression. J Neurosurg. 1979;51(2):229–33.
Article
CAS
PubMed
Google Scholar
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21.
Article
CAS
PubMed
Google Scholar
Hosseini M, Karami Z, Janzadenh A, Jameie SB, Mashadi ZH, Yousefifard M, et al. The effect of intrathecal administration of muscimol on modulation of neuropathic pain symptoms resulting from spinal cord injury; an experimental study. Emergency. 2014;2(4):151–7.
PubMed
PubMed Central
Google Scholar
D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8–16. doi:10.1093/bja/aen088.
Article
PubMed
Google Scholar
Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol. 2012;234:39–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goto N. Discriminative staining methods for the nervous system: Luxol fast blue-periodic acid-Schiff-hematoxylin triple stain and subsidiary staining methods. Biotech Histochem. 1987;62(5):305–15.
CAS
Google Scholar
Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035(1):73–85.
Article
CAS
PubMed
Google Scholar
Vaquero J, Zurita M, Oya S, Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett. 2006;398(1):129–34.
Article
CAS
PubMed
Google Scholar
Urdzíková L, Jendelová P, Glogarová K, Burian M, Hájek M, Syková E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006;23(9):1379–91.
Article
PubMed
Google Scholar
Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007;104(4):944–8.
Article
PubMed
Google Scholar
Amemori T, Jendelová P, Ruzicková K, Arboleda D, Syková E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010;12(2):212–25.
Article
CAS
PubMed
Google Scholar
Lee B, Kim J, Kim SJ, Lee H, Chang JW. Constitutive GABA expression via a recombinant adeno-associated virus consistently attenuates neuropathic pain. Biochem Biophys Res Commun. 2007;357(4):971–6.
Article
CAS
PubMed
Google Scholar
Lee KH, Suh-Kim H, Choi JS, Jeun S, Kim EJ, Kim S, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp. 2007;67(1):13–22.
Google Scholar
Musolino PL, Coronel MF, Hökfelt T, Villar MJ. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci Lett. 2007;418(1):97–101.
Article
CAS
PubMed
Google Scholar
Guo W, Wang H, Zou S, Gu M, Watanabe M, Wei F, et al. Bone marrow stromal cells produce long‐term pain relief in rat models of persistent pain. Stem Cells. 2011;29(8):1294–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumagai G, Tsoulfas P, Toh S, McNiece I, Bramlett HM, Dietrich WD. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol. 2013;248:369–80.
Article
CAS
PubMed
Google Scholar
Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci. 2011;5:1–10.
Article
Google Scholar
Vaysse L, Sol J, Lazorthes Y, Courtade-Saidi M, Eaton M, Jozan S. GABAergic pathway in a rat model of chronic neuropathic pain: modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res. 2011;69(2):111–20.
Article
CAS
PubMed
Google Scholar
Zhang J, Wu D, Xie C, Wang H, Wang W, Zhang H, et al. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain. PloS One. 2013;8(8):e72943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One. 2008;3(10):e3336.
Article
PubMed
PubMed Central
Google Scholar
Roh D-H, Seo M-S, Choi H-S, Park S-B, Han H-J, Beitz AJ, et al. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant. 2013;22(9):1577–90.
Article
PubMed
Google Scholar
Schäfer S, Berger JV, Deumens R, Goursaud S, Hanisch U-K, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation. 2014;11(1):157.
Article
PubMed
PubMed Central
Google Scholar
Torres‐Espín A, Redondo‐Castro E, Hernández J, Navarro X. Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury—a morphological and functional comparison in rats. Eur J Neurosci. 2014;39(10):1704–17.
Article
PubMed
Google Scholar
Jin HJ, Bae YK, Kim M, Kwon S-J, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986–8001.
Article
PubMed
PubMed Central
Google Scholar
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301. doi:10.1634/stemcells.2005-0342.
Article
CAS
PubMed
Google Scholar
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92. doi:10.1634/stemcells.2006-0709.
Article
CAS
PubMed
Google Scholar
Panepucci RA, Siufi JLC, Silva WA, Proto-Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow–derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263–78. doi:10.1634/stemcells.2004-0024.
Article
CAS
PubMed
Google Scholar
Mannoji C, Koda M, Kamiya K, Dezawa M, Hashimoto M, Furuya T, et al. Transplantation of human bone marrow stromal cell-derived neuroregenerative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp. 2014;74:479–88.
Google Scholar
Kim J-W, Ha K-Y, Molon JN, Kim Y-H. Bone marrow–derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Spine. 2013;38(17):E1065–74.
Article
PubMed
Google Scholar
Veeravalli KK, Dasari VR, Tsung AJ, Dinh DH, Gujrati M, Fassett D, et al. Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiol Dis. 2009;36(1):200–12.
Article
CAS
PubMed
Google Scholar
Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933–46. doi:10.2217/rme.10.72.
Article
PubMed
PubMed Central
Google Scholar
Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281–99.
Google Scholar
Montespan F, Deschaseaux F, Sensébé L, Carosella ED, Rouas-Freiss N. Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy. J Immunol Res. 2014;2014:1–10.
Article
Google Scholar
Hou R, Liu R, Niu X, Chang W, Yan X, Wang C, et al. Biological characteristics and gene expression pattern of bone marrow mesenchymal stem cells in patients with psoriasis. Exp Dermatol. 2014;23(7):521–3.
Article
CAS
PubMed
Google Scholar
Menendez P, Rodriguez R, Delgado M, Rosu-Myles M. Human bone marrow mesenchymal stem cells lose immunosuppressive and anti-inflammatory properties upon oncogenic transformation. Exp Hematol. 2014;42(8):S49.
Google Scholar
Coulson-Thomas VJ, Gesteira TF, Hascall V, Kao W. Umbilical cord mesenchymal stem cells suppress host rejection the role of the glycocalyx. J Biol Chem. 2014;289(34):23465–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alunno A, Montanucci P, Bistoni O, Basta G, Caterbi S, Pescara T, et al. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren’s syndrome. Rheumatology. 2015;54(1):163–8.
Article
PubMed
Google Scholar
Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood‐derived mesenchymal stem cells in vitro. Immunology. 2009;126(2):220–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oudega M, Ritfeld G. Bone marrow-derived mesenchymal stem cell transplant survival in the injured rodent spinal cord. J Bone Marrow Res. 2014;2(146):2–9.
Google Scholar
Kuchroo P, Dave V, Vijayan A, Viswanathan C, Ghosh D. Paracrine factors secreted by umbilical cord-derived mscs induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells Dev. 2014;24(4):437–50.
Article
PubMed
PubMed Central
Google Scholar
Hua J, He Z-G, Qian D-H, Lin S-P, Gong J, Meng H-B, et al. Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol. 2014;7(7):3580.
CAS
PubMed
PubMed Central
Google Scholar
Toft A, Scott DT, Barnett SC, Riddell JS. Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain. 2007;130(4):970–84.
Article
PubMed
Google Scholar
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150(6):1264–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA, Lopez MG, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010;28(9):1541–9. doi:10.1002/stem.489.
Article
PubMed
PubMed Central
Google Scholar
Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells. 2011;29(12):1983–94. doi:10.1002/stem.767.
Article
PubMed
Google Scholar
Ziegler MD, Hsu D, Takeoka A, Zhong H, Ramon-Cueto A, Phelps PE, et al. Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection. Exp Neurol. 2011;229(1):109–19. doi:10.1016/j.expneurol.2011.01.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ban D-X, Ning G-Z, Feng S-Q, Wang Y, Zhou X-H, Liu Y, et al. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med. 2011;6(6):707–20.
Article
CAS
PubMed
Google Scholar
Ghobrial G, Haas C, Maulucci C, Lepore A, Fischer I. Promising advances in targeted cellular based therapies: treatment update in spinal cord injury. J Stem Cell Res Ther. 2014;4(170):2–7.
Google Scholar
Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage‐colony stimulating factor: phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73.
Article
PubMed
Google Scholar
Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7(4):241–8.
PubMed
Google Scholar
Jarocha D, Milczarek O, Kawecki Z, Wendrychowicz A, Kwiatkowski S, Majka M. Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury. Stem Cells Transl Med. 2014;3(3):395-404.