On February 7, 2020, a 54-year-old man presented to Yanggu People’s Hospital, Shandong, with a 4-day history of cough, chest tightness, and fever. Apart from a 2-year history of diabetes, the patient had no other specific medical history. The physical examination showed a body temperature of 38.0 °C, blood pressure of 141/87 mmHg, and pulse of 81 beats per minute. A blood routine examination was arranged urgently, and throat swabs were collected. The result revealed that the white cell count and absolute lymphocyte count were 7.59 × 109/L (reference range 3.5~9.5 × 109/L) and 0.24 × 109/L (reference range 1.1~3.2 × 109/L), respectively; C-reactive protein (CRP), 59.64 mg/L (reference range 0 ~ 10 mg/L); influenza A and B virus antigen (−); and routine anti-inflammation and antivirus therapy were given for supportive treatment.
On February 9, 2020, the real-time polymerase chain reaction (RT-PCR) assay confirmed that the patient’s specimen tested positive for COVID-19. Then, the patient was admitted to an airborne isolation unit in Liaocheng Infectious Disease Hospital for clinical observation.
On February 11, 2020, the patient felt severe shortness of breath, and the oxygen saturation values decreased to as low as 87.9%. Related laboratory results showed PH (7.46), PCO2 (26 mmHg), PO2 (50 mmHg), HCO3 (18.4 mmol/L). The doctors decided to change the diagnosis to COVID-19 (critically severe type), and the patient was admitted to the ICU of Liaocheng People’s Hospital for better treatment.
On February 12, 2020, the shortness of breath even got worse under the oxygen supplementation. The doctor speeded up the oxygen airflow to 45 L per minute. Chest computerized tomography (CT) clearly showed evidence of pneumonia and ground-glass opacity, in the right and left lungs (Fig. 1A-1–A-4). According to the guideline for the diagnosis and treatment of COVID-19 [14], the patient was treated with antiviral therapy of lopinavir/ritonavir, IFN-α inhalation, and also intravenous injection of levofloxacin, tanreqing capsule, xuebijing, thymosin α1, methylprednisolone, and immunoglobulin. During this time, the patient received antipyretic therapy. More treatments were conducted consisting of electrocardiograph monitoring, potassium chloride sustained-release tablets (oral, 1 g per time, 2 times per day), plasma exchange and regulated intestinal microflora of patient, etc. Finally, the discomfort was released, and the oxygen saturation increased to 98%.
On February 13 to 21, the patient’s vital physical signs remained largely stable, apart from the development of intermittent fevers and shortness of breath.
On February 22, the patient took a turn for the worse (Fig. 1B-1–B-4). Considering the severe organ injury caused by an inflammatory response, hWJC adoptive transfer therapy was proposed under the advice and guidance of the specialist group. The family member and patient agreed to try hWJC adoptive transfer therapy. The therapeutic scheme was then discussed and approved by the ethics committee of the hospital, and consent forms were signed by the family member before the therapy. On February 24, the patient receives hWJC transfusion.
On March 1, the patient felt much better. The shortness of breath was significantly recovering. The CRP decreased to 27.2 g/L, the absolute lymphocyte count rose to 0.66 × 109/L, and the inflammatory factors reduced to normal levels, which indicated that the patient was recovering rapidly. On March 2, the patient meets the discharge standard, and the medical observation is canceled