Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.
Article
PubMed
PubMed Central
Google Scholar
Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Vol. 51, Progress in Retinal and Eye Research. Elsevier Ltd; 2016. p. 156–86.
Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91.
Article
PubMed
Google Scholar
International Diabetes Federation. IDF Diabetes Atlas, 10th edn. . Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org. 2021.
Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Progr Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2).
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Vol. 17, Nature Reviews Endocrinology. Nature Research; 2021. p. 195–206.
Santos AR, Ribeiro L, Bandello F, Lattanzio R, Egan C, Frydkjaer-Olsen U, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes. 2017;66(9).
Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9).
Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Research. 2017;139.
Hamadneh T, Aftab S, Sherali N, Vetrivel Suresh R, Tsouklidis N, An M. Choroidal changes in diabetic patients with different stages of diabetic retinopathy. Cureus. 2020.
Xu H, Chen M. Diabetic retinopathy and dysregulated innate immunity. Vis Res. 2017;139:39–46.
Article
PubMed
Google Scholar
Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications. Diabetes Metab. 2019;45(6):517–27.
Article
CAS
PubMed
Google Scholar
Das A, Stroud S, Mehta A, Rangasamy S. New treatments for diabetic retinopathy. Diabetes Obes Metab. 2015;17(3):230.
Brown DM, Wykoff CC, Boyer D, Heier JS, Clark WL, Emanuelli A, et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy. JAMA Ophthalmol. 2021;139(9):946.
Article
PubMed
Google Scholar
Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, et al. Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy. JAMA Ophthalmol. 2021;139(7):701.
Article
PubMed
PubMed Central
Google Scholar
Vilà González M, Eleftheriadou M, Kelaini S, Naderi-Meshkin H, Flanagan S, Stewart S, et al. Endothelial cells derived from patients with diabetic macular edema recapitulate clinical evaluations of anti-VEGF responsiveness through the neuronal pentraxin 2 pathway. Diabetes. 2020;69(10):2170–85.
Article
PubMed
CAS
Google Scholar
Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
ACCORD Study Group, ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.
Inoue K, Kataoka SY, Kawano S, Furukawa TA, Lois N, Watanabe N. Fenofibrate for diabetic retinopathy. Cochrane Database Syst Rev. 2019.
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res. 2016;2016:1–18.
Article
CAS
Google Scholar
Simó R, Hernández C, Porta M, Bandello F, Grauslund J, Harding SP, et al. Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial. Diabetes. 2019;68(2):457–63.
Article
PubMed
CAS
Google Scholar
Gaddam S, Periasamy R, Gangaraju R. Adult stem cell therapeutics in diabetic retinopathy. international journal of molecular sciences. 2019 Sep 30;20(19).
Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, et al. Vascular regeneration for ischemic retinopathies: hope from cell therapies. Current Eye Res. 2020;45(3).
Stitt AW, O’Neill CL, O’Doherty MT, Archer DB, Gardiner TA, Medina RJ. Vascular stem cells and ischaemic retinopathies. Prog Retin Eye Res. 2011;30(3):149–66.
Article
CAS
PubMed
Google Scholar
Takahashi K, Kishi S, Muraoka K, Shimizu K. Reperfusion of occluded capillary beds in diabetic retinopathy. Am J Ophthalmol. 1998;126(6):791–7.
Article
CAS
PubMed
Google Scholar
Mohan R, Kohner EM. Retinal revascularisation in diabetic retinopathy. Br J Ophthalmol. 1986;70(2):114–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muraoka K, Shimizu K. Intraretinal neovascularization in diabetic retinopathy. Ophthalmology. 1984;91(12):1440–6.
Article
CAS
PubMed
Google Scholar
Chambers SEJ, Pathak V, Pedrini E, Soret L, Gendron N, Guerin CL, et al. Current concepts on endothelial stem cells definition, location, and markers. Vol. 10, Stem Cells Translational Medicine. John Wiley and Sons Ltd; 2021. po. S54–61.
Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 2014;21(3):224–8.
Article
PubMed
PubMed Central
Google Scholar
Kawasaki T, Nishiwaki T, Sekine A, Nishimura R, Suda R, Urushibara T, et al. Vascular repair by tissue-resident endothelial progenitor cells in endotoxin-induced lung injury. Am J Respir Cell Mol Biol. 2015;53(4):500–12.
Article
CAS
PubMed
Google Scholar
Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, et al. Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process. Circulation. 2017;135(8):786–805.
Article
CAS
PubMed
Google Scholar
Spampinato SF, Caruso GI, de Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020;13(4):60.
Article
CAS
PubMed Central
Google Scholar
Hess DA, Verma S, Bhatt D, Bakbak E, Terenzi DC, Puar P, et al. Vascular repair and regeneration in cardiometabolic diseases. Eur Heart J. 2022;43(6):450–9.
Article
PubMed
Google Scholar
Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003 Sep;110(9).
Yamana Y, Ohnishi Y, Taniguchi Y, Ikeda M. Early signs of diabetic retinopathy by fluorescein angiography. Jpn J Ophthalmol. 1983;27(1):218–27.
CAS
PubMed
Google Scholar
Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37(5):886–97.
CAS
PubMed
Google Scholar
Arias JD, Arango FJ, Parra MM, Sánchez-Ávila RM, Parra-Serrano GA, Hoyos AT, et al. Early microvascular changes in patients with prediabetes evaluated by optical coherence tomography angiography. Therap Adv Ophthalmol. 2021;21:13.
Google Scholar
de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11).
Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, et al. Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science. 2016;57(9).
Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra–wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.
Article
PubMed
Google Scholar
Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.
Article
PubMed
Google Scholar
Carpineto P, Toto L, Aloia R, Ciciarelli V, Borrelli E, Vitacolonna E, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye. 2016;30(5).
Pincelli Netto M, Lima VC, Pacheco MA, Unonius N, Gracitelli CP, Prata TS. Macular inner retinal layer thinning in diabetic patients without retinopathy measured by spectral domain optical coherence tomography. Med Hypothesis Discov Innov Ophthalmol. 2018;7(3).
Bontzos G, Kabanarou SA, Gkizis I, Ragkousis A, Xirou T, Peto T. Retinal neurodegeneration, macular circulation and morphology of the foveal avascular zone in diabetic patients: quantitative cross‐sectional study using OCT‐A. Acta Ophthalmologica. 2021;99(7).
van Dijk HW, Verbraak FD, Kok PHB, Stehouwer M, Garvin MK, Sonka M, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6).
Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309.
Article
PubMed
Google Scholar
Das R, Spence G, Hogg RE, Stevenson M, Chakravarthy U. Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol. 2018;136(2):202.
Article
PubMed
PubMed Central
Google Scholar
Joltikov KA, Sesi CA, de Castro VM, Davila JR, Anand R, Khan SM, et al. Disorganization of Retinal Inner Layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy. Investig Opthalmol Vis Sci. 2018;59(13):5481.
Article
CAS
Google Scholar
Bresnick GH. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Arch Ophthalmol. 1984;102(9):1307.
Article
CAS
PubMed
Google Scholar
Luu CD, Szental JA, Lee SY, Lavanya R, Wong TY. Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Investig Opthalmol Vis Sci. 2010;51(1):482.
Article
Google Scholar
Harrison WW, Bearse MA, Ng JS, Jewell NP, Barez S, Burger D, et al. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Investig Opthalmol Vis Sci. 2011;52(2):772.
Article
Google Scholar
Mohammed MA, Lolah MM, Doheim MF, AbouSamra A. Functional assessment of early retinal changes in diabetic patients without clinical retinopathy using multifocal electroretinogram. BMC Ophthalmol. 2020 Dec 1;20(1).
Ratra D, Nagarajan R, Dalan D, Prakash N, Kuppan K, Thanikachalam S, et al. Early structural and functional neurovascular changes in the retina in the prediabetic stage. Eye. 2021;35(3):858–67.
Article
CAS
PubMed
Google Scholar
Montesano G, Ometto G, Higgins BE, Das R, Graham KW, Chakravarthy U, et al. Evidence for structural and functional damage of the inner retina in diabetes with no diabetic retinopathy. Investig Opthalmol Vis Sci. 2021;62(3):35.
Article
Google Scholar
Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther. 2017;171:30–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chambers SEJ, Pathak V, Pedrini E, Soret L, Gendron N, Guerin CL, et al. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl Med. 2021;10(S2):S54-61.
Article
PubMed
PubMed Central
Google Scholar
Kuehnle I. The therapeutic potential of stem cells from adults. BMJ. 2002;325(7360):372–6.
Article
PubMed
PubMed Central
Google Scholar
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):2173–85.
Article
PubMed
PubMed Central
Google Scholar
Dominici MLBK, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.
Article
CAS
PubMed
Google Scholar
Zhang X, Bendeck MP, Simmons CA, Santerre JP. Deriving vascular smooth muscle cells from mesenchymal stromal cells: evolving differentiation strategies and current understanding of their mechanisms. Biomaterials. 2017;145:9–22.
Article
CAS
PubMed
Google Scholar
Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg. 2018;55(2):257–65.
Article
PubMed
Google Scholar
J Braga Osorio Gomes Salgado A, L Goncalves Reis R, Jorge Carvalho Sousa N, M Gimble J, J Salgado A, L Reis R, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Therapy. 2010;5(2):103–10.
Tao H, Han Z, Han ZC, Li Z. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int. 2016;2016:1–11.
Article
CAS
Google Scholar
Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Investig. 2006;116(12):3266–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Cheng W, Cui X, Xu G. Therapeutic effect against retinal neovascularization in a mouse model of oxygen-induced retinopathy: bone marrow-derived mesenchymal stem cells versus Conbercept. BMC Ophthalmol. 2020;20(1):7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Z, Liu H, Yang M, Bai Y, Zhang B, Wang C, et al. Bone marrow mesenchymal stem cell-derived endothelial cells increase capillary density and accelerate angiogenesis in mouse hindlimb ischemia model. Stem Cell Res Ther. 2020;11(1):221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motawea SM, Noreldin RI, Naguib YM. Potential therapeutic effects of endothelial cells trans-differentiated from Wharton’s Jelly-derived mesenchymal stem cells on altered vascular functions in aged diabetic rat model. Diabetol Metab Syndr. 2020;12(1):40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdanyar A, Zhang P, Dolf C, Smit-McBride Z, Cary W, Nolta JA, et al. Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Exp Eye Res. 2020;190:107865.
Article
CAS
PubMed
Google Scholar
Cheung KW, Yazdanyar A, Dolf C, Cary W, Marsh-Armstrong N, Nolta JA, et al. Analysis of the retinal capillary plexus layers in a murine model with diabetic retinopathy: effect of intravitreal injection of human CD34+ bone marrow stem cells. Ann Transl Med. 2021;9(15):1273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SS, Caballero S, Bauer G, Shibata B, Roth A, Fitzgerald PG, et al. Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34+ cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2012;53(2):986–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 2007;56(4):960–7.
Article
CAS
PubMed
Google Scholar
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65.
Article
CAS
PubMed
Google Scholar
Mackie AR, Losordo DW. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J. 2011;38(5):474–85.
PubMed
PubMed Central
Google Scholar
Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2014;56(1):81–9.
Article
PubMed
CAS
Google Scholar
Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med. 2017;6(5):1316–20.
Article
PubMed
PubMed Central
Google Scholar
Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, et al. Myeloid angiogenic cells act as alternative m2 macrophages and modulate angiogenesis through interleukin-8. Mol Med. 2011;17(9–10):1045–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banno K, Yoder MC. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res. 2018;83(1–2):283–90.
Article
CAS
PubMed
Google Scholar
Medina RJ, O’Neill CL, Humphreys MW, Gardiner TA, Stitt AW. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Investig Opthalmol Vis Sci. 2010;51(11):5906.
Article
Google Scholar
Prasain N, Lee MR, Vemula S, Meador JL, Yoshimoto M, Ferkowicz MJ, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells. Nat Biotechnol. 2014;32(11):1151–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahoon JM, Rai RR, Carroll LS, Uehara H, Zhang X, O’Neil CL, et al. Intravitreal AAV2.COMP-Ang1 prevents neurovascular degeneration in a murine model of diabetic retinopathy. Diabetes. 2015;64(12):4247–59.
Collett JA, Mehrotra P, Crone A, Shelley WC, Yoder MC, Basile DP. Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol-Renal Physiol. 2017;312(5):F897-907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viñas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney Int. 2016;90(6):1238–50.
Article
PubMed
CAS
Google Scholar
Dellett M, Brown ED, Guduric-Fuchs J, O’Connor A, Stitt AW, Medina RJ, et al. MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J Cell Mol Med. 2017;21(12):3405–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang KT, Lin RZ, Kuppermann D, Melero-Martin JM, Bischoff J. Endothelial colony forming cells and mesenchymal progenitor cells form blood vessels and increase blood flow in ischemic muscle. Sci Rep. 2017;7(1):770.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao L, Guo Z, Chen K, Yang W, Wan X, Zeng P, et al. Combined transplantation of mesenchymal stem cells and endothelial colony-forming cells accelerates refractory diabetic foot ulcer healing. Stem Cells Int. 2020;9(2020):1–13.
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
Article
CAS
PubMed
Google Scholar
Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545(7653):229–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci. 2018;75(8):1411–33.
Article
CAS
PubMed
Google Scholar
Cho H, Macklin BL, Lin YY, Zhou L, Lai MJ, Lee G, et al. iPSC-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight. 2020;5(6).
Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation. 2014;129(3):359–72.
Article
PubMed
Google Scholar
Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, ten Dijke P, Mummery CL. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols. 2014;9(6):1514–31.
Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87–99.
Article
PubMed
Google Scholar
Jamieson JJ, Linville RM, Ding YY, Gerecht S, Searson PC. Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS. 2019;16(1):15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mannino G, Gennuso F, Giurdanella G, Conti F, Drago F, Salomone S, et al. Pericyte-like differentiation of human adipose-derived mesenchymal stem cells: An in vitro study. World J Stem Cells. 2020;12(10):1152–70.
Article
PubMed
PubMed Central
Google Scholar
Kremer H, Gebauer J, Elvers-Hornung S, Uhlig S, Hammes HP, Beltramo E, et al. Pro-angiogenic activity discriminates human adipose-derived stromal cells from retinal pericytes: considerations for cell-based therapy of diabetic retinopathy. Front Cell Dev Biol. 2020;8:387.
Article
PubMed
PubMed Central
Google Scholar
Mendel TA, Clabough EBD, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE. 2013;8(5):e65691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hajmousa G, Przybyt E, Pfister F, Paredes-Juarez GA, Moganti K, Busch S, et al. Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells. Diabetologia. 2018;61(11):2371–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE. 2014;9(1):e84671.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vis Res. 2017;139:93–100.
Article
PubMed
Google Scholar
Martin PM, Roon P, van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Investig Opthalmol Vis Sci. 2004;45(9):3330.
Article
Google Scholar
Yang Q, Xu Y, Xie P, Cheng H, Song Q, Su T, et al. Retinal neurodegeneration in db/db mice at the early period of diabetes. J Ophthalmol. 2015;2015:1–9.
CAS
Google Scholar
Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Investig Opthalmol Vis Sci. 2008;49(2):732.
Article
Google Scholar
Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46(9):1260–8.
Article
PubMed
Google Scholar
Cho NC. Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol. 2000;118(10):1393.
Article
CAS
PubMed
Google Scholar
Hombrebueno JR, Chen M, Penalva RG, Xu H. Loss of synaptic connectivity, particularly in second order neurons is a key feature of diabetic retinal neuropathy in the Ins2Akita mouse. PLoS ONE. 2014;9(5):e97970.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res. 2021;202:108283.
Article
CAS
PubMed
Google Scholar
Yuan F, Wang M, Jin K, Xiang M. Advances in regeneration of retinal ganglion cells and optic nerves. Int J Mol Sci. 2021;22(9):4616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reh TA. Photoreceptor transplantation in late stage retinal degeneration. Investig Opthalmol Vis Sci. 2016;57(5):ORSFg1.
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther. 2016;7(1):42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Çerman E, Akkoç T, Eraslan M, Şahin Ö, Özkara S, Vardar Aker F, et al. Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS ONE. 2016;11(6):e0156495.
Article
PubMed
PubMed Central
CAS
Google Scholar
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020;11(1):25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park UC, Park SS, Kim BH, Park SW, Kim YJ, Cary W, et al. Subretinal versus intravitreal administration of human CD34+ bone marrow-derived stem cells in a rat model of inherited retinal degeneration. Annals Transl Med. 2021;9(15):1275–1275.
Article
CAS
Google Scholar
Aftab U, Jiang C, Tucker B, Kim JY, Klassen H, Miljan E, et al. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res. 2009;89(3):301–10.
Article
CAS
PubMed
Google Scholar
Yang P. In vitro isolation and expansion of human retinal progenitor cells. Exp Neurol. 2002;177(1):326–31.
Article
CAS
PubMed
Google Scholar
Schmitt S, Aftab U, Jiang C, Redenti S, Klassen H, Miljan E, et al. Molecular characterization of human retinal progenitor cells. Investig Opthalmol Vis Sci. 2009;50(12):5901.
Article
Google Scholar
Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barber AC, Hippert C, Duran Y, West EL, Bainbridge JWB, Warre-Cornish K, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(1):354–9.
Article
CAS
PubMed
Google Scholar
MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–7.
Article
CAS
PubMed
Google Scholar
Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, et al. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7(1):13537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat Commun. 2016;7(1):13028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. 2016;7(1):13029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res. 2019;69:1–37.
Article
CAS
PubMed
Google Scholar
Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(3):1101–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnea-Cramer AO, Wang W, Lu SJ, Singh MS, Luo C, Huo H, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep. 2016;6(1):29784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semo M, Haamedi N, Stevanato L, Carter D, Brooke G, Young M, et al. Efficacy and Safety of Human Retinal Progenitor Cells. Transl Vis Sci Technol. 2016;5(4):6.
Article
PubMed
PubMed Central
Google Scholar
Qu L, Gao L, Xu H, Duan P, Zeng Y, Liu Y, et al. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep. 2017;7(1):199.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8(1):209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci. 2006;103(34):12769–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JY, Ma D, Lim MS, Cho MS, Kim YJ, Yu HG. Embryonic stem cell-derived photoreceptor precursor cells differentiated by coculture with RPE cells. Mol Vis. 2021;27:288–99.
CAS
PubMed
PubMed Central
Google Scholar
Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4(1):73–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc. 2009;4(6):811–24.
Article
CAS
PubMed
Google Scholar
Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5(1):4047.
Article
CAS
PubMed
Google Scholar
Li X, Zhang L, Tang F, Wei X. Retinal organoids: cultivation, differentiation, and transplantation. Front Cell Neurosci. 2021;28:15.
Google Scholar
Aboualizadeh E, Phillips MJ, McGregor JE, DiLoreto DA, Strazzeri JM, Dhakal KR, et al. Imaging transplanted photoreceptors in living nonhuman primates with single-cell resolution. Stem Cell Rep. 2020;15(2):482–97.
Article
CAS
Google Scholar
Lingam S, Liu Z, Yang B, Wong W, Parikh BH, Ong JY, et al. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res Ther. 2021;12(1):464.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerti D, Hilgen G, Dorgau B, Collin J, Ader M, Armstrong L, et al. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration. Stem Cells. 2021;39(7):882–96.
Article
CAS
PubMed
Google Scholar
Takeda M, Takamiya A, Jiao J wei, Cho KS, Trevino SG, Matsuda T, et al. α-Aminoadipate induces progenitor cell properties of müller glia in adult mice. Investig Opthalmol Vis Sci. 2008;49(3):1142.
Wan J, Zheng H, Chen ZL, Xiao HL, Shen ZJ, Zhou GM. Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vis Res. 2008;48(2):223–34.
Article
CAS
PubMed
Google Scholar
Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15(7):431–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fausett BV, Goldman D. A Role for 1 tubulin-expressing muller glia in regeneration of the injured zebrafish retina. J Neurosci. 2006;26(23):6303–13.
Bhatia B, Singhal S, Lawrence JM, Khaw PT, Limb GA. Distribution of Müller stem cells within the neural retina: Evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res. 2009;89(3):373–82.
Article
CAS
PubMed
Google Scholar
Gu D, Wang S, Zhang S, Zhang P, Zhou G. Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep. 2017;16(6):7993–8002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V. Adult human Müller Glia cells are a highly efficient source of rod photoreceptors. Stem Cells. 2011;29(2):344–56.
Article
CAS
PubMed
Google Scholar
Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM. Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun. 2007;363(2):347–54.
Article
CAS
PubMed
Google Scholar
Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, et al. Transplantation of photoreceptors derived from human Müller Glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014;3(3):323–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singhal S, Bhatia B, Jayaram H, Becker S, Jones MF, Cottrill PB, et al. Human Müller Glia with stem cell characteristics differentiate into Retinal Ganglion Cell (RGC) precursors in vitro and partially restore rgc function in vivo following transplantation. Stem Cells Transl Med. 2012;1(3):188–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eastlake K, Wang W, Jayaram H, Murray-Dunning C, Carr AJF, Ramsden CM, et al. Phenotypic and functional characterization of müller glia isolated from induced pluripotent stem cell-derived retinal organoids: improvement of retinal ganglion cell function upon transplantation. Stem Cells Transl Med. 2019;8(8):775–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill KP, Hung SSC, Sharov A, Lo CY, Needham K, Lidgerwood GE, et al. Enriched retinal ganglion cells derived from human embryonic stem cells. Sci Rep. 2016;6(1):30552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular injection of ES cell-derived neural progenitors improve visual function in retinal ganglion cell-depleted mouse models. Front Cell Neurosci. 2017;20:11.
Google Scholar
Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells. 2016;34(6):1553–62.
Article
CAS
PubMed
Google Scholar
Riazifar H, Jia Y, Chen J, Lynch G, Huang T. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med. 2014;3(4):424–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson T v., Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Investig Opthalmol Vis Sci. 2010;51(4):2051.
Cui H, Hu Y, Wang ZM, Tan HB, Rong H, Cui HP. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma. Clinical Interventions in Aging. 2013;1467.
Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Investig Opthalmol Vis Sci. 2011;52(5):2160.
Article
CAS
Google Scholar
Weinberger D, Fink-Cohen S, Gaton DD, Priel E, Yassur Y. Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol. 1995;79(8):728–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68.
Article
PubMed
Google Scholar
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res. 2017;139:72–81.
Article
PubMed
Google Scholar
Mazzilli JL, Snook JD, Simmons K, Domozhirov AY, Garcia CA, Wetsel RA, et al. A preclinical safety study of human embryonic stem cell-derived retinal pigment epithelial cells for macular degeneration. J Ocul Pharmacol Ther. 2020;36(1):65–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. stem cells. 2009;27(10):2427–34.
Kokkinaki M, Sahibzada N, Golestaneh N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells. 2011;29(5):825–35.
Article
CAS
PubMed
Google Scholar
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408.
Article
CAS
PubMed
Google Scholar
Petrus-Reurer S, Kumar P, Padrell Sánchez S, Aronsson M, André H, Bartuma H, et al. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem Cells Transl Med. 2020;9(8):936–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaza Reyes A, Petrus-Reurer S, Antonsson L, Stenfelt S, Bartuma H, Panula S, et al. Xeno-free and defined human embryonic stem cell-derived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model. Stem Cell Rep. 2016;6(1):9–17.
Article
CAS
Google Scholar
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.
Article
PubMed
CAS
Google Scholar
Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investig Opthalmol Vis Sci. 2016;57(5):ORSFc1.
Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE. 2009;4(12):e8152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Su B, Jiao L, Xu ZH, Zhang CJ, Nie J, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Ann Transl Med. 2021;9(3):245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.
Article
CAS
PubMed
Google Scholar
Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo. International Journal of Ophthalmology. 2018 May 18.
Huang L, You J, Yao Y, Xie M. Interleukin-13 gene modification enhances grafted mesenchymal stem cells survival after subretinal transplantation. Cell Mol Neurobiol. 2020;40(5):725–35.
Article
CAS
PubMed
Google Scholar
Deng X, Li Z, Zeng P, Wang J, Liang J, Lan Y. A diagnostic model for screening diabetic retinopathy using the hand-held electroretinogram device RETeval. Front Endocrinol. 2021;12:12.
Google Scholar
Baba T. Detecting diabetic retinal neuropathy using fundus perimetry. Int J Mol Sci. 2021;22(19):10726.
Invernizzi A, Pellegrini M, Cornish E, Yi Chong Teo K, Cereda M, Chabblani J. Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography. Asia-Pacific J Ophthalmol. 2020;9(4):335–48.
Pearson RA, Ali RR. Unlocking the potential for endogenous repair to restore sight. Neuron. 2018;100(3):524–6.
Article
CAS
PubMed
Google Scholar
Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, et al. Vision loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med. 2017;376(11):1047–53.
Article
PubMed
PubMed Central
Google Scholar