Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells Dev. 2006;15:295–303.
Article
CAS
PubMed
Google Scholar
Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res. 2014;39:541–52.
Article
CAS
PubMed
Google Scholar
Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:19.
Article
Google Scholar
Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.
Article
CAS
PubMed
Google Scholar
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.
Article
CAS
PubMed
Google Scholar
Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.
Article
CAS
PubMed
Google Scholar
Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci U S A. 2012;109:14176–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehraban M, Zadhoush A, Abdolkarim Hosseini Ravandi S, Bagheri R, Heidarkhan Tehrani A. Preparation of porous nanofibers from electrospun polyacrylonitrile/calcium carbonate composite nanofibers using porogen leaching technique. J Appl Polym Sci. 2013;128:926–33.
Article
CAS
Google Scholar
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeugolis DI, Khew ST, Yew ES, Ekaputra AK, Tong YW, Yung LY, Hutmacher DW, Sheppard C, Raghunath M. Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials. 2008;29:2293–305.
Article
CAS
PubMed
Google Scholar
Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F. Potential of electrospun nanofibers for biomedical and dental applications. Materials. 2016;9:73.
Article
Google Scholar
Nurfaizey A, Stanger J, Tucker N, Buunk N, Wallace A, Staiger M. Manipulation of electrospun fibres in flight: the principle of superposition of electric fields as a control method. J Mater Sci. 2012;47:1156–63.
Article
CAS
Google Scholar
Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, Ouyang HW. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31:2163–75.
Article
CAS
PubMed
Google Scholar
Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Young MF, Simon Jr CG. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials. 2011;32:9188–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morelli S, Salerno S, Holopainen J, Ritala M, De Bartolo L. Osteogenic and osteoclastogenic differentiation of co-cultured cells in Polylactic acid-nanohydroxyapatite fiber scaffolds. J Biotechnol. 2015;204:53–62.
Article
CAS
PubMed
Google Scholar
Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2015. doi:10.1002/term.1999.
Mohtaram NK, Ko J, King C, Sun L, Muller N, Jun MB, Willerth SM. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. J Biomed Mater Res A. 2015;103:2591–2601.
Article
CAS
PubMed
Google Scholar
Norouzi M, Shabani I, Ahvaz HH, Soleimani M. PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. J Biomed Mater Res A. 2015;103:2225–35.
Article
CAS
PubMed
Google Scholar
Ortega I, Sefat F, Deshpande P, Paterson T, Ramachandran C, Ryan AJ, MacNeil S, Claeyssens F. Combination of microstereolithography and electrospinning to produce membranes equipped with niches for corneal regeneration. J Vis Exp. 2014;91:e5182. doi:10.3791/51826.
Kiselev P, Rosell-Llompart J. Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci. 2012;125:2433–41.
Article
CAS
Google Scholar
Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011;17:349–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperling LE, Reis KP, Pranke P, Wendorff JH. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today. 2016;21:1243–56.
Article
CAS
PubMed
Google Scholar
Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–425.
Article
CAS
Google Scholar
Nezarati RM, Eifert MB, Cosgriff-Hernandez E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods. 2013;19:810–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zargham S, Bazgir S, Tavakoli A, Rashidi AS, Damerchely R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J Eng Fabr Fibers. 2012;7:42–9.
CAS
Google Scholar
Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C Mater Biol Appl. 2014;45:659–70.
Article
CAS
PubMed
Google Scholar
Ma B, Xie J, Jiang J, Shuler FD, Bartlett DE. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine. 2013;8:1459–81.
Article
CAS
PubMed
Google Scholar
Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999;20:2363–76.
Article
CAS
PubMed
Google Scholar
M. XYaWG. Soft Lithography. Ann Rev Mater Sci. 1998;28:153–84.
Suh KY, Seong J, Khademhosseini A, Laibinis PE, Langer R. A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials. 2004;25:557–63.
Article
CAS
PubMed
Google Scholar
Khademhosseini AJ, S. Suh KY, Tran TNT, Eng G, Yeh J, Seong J, Langer R. Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv Mater. 2003;15:1995–2000.
Harris GM, Shazly T, Jabbarzadeh E. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading. PLoS One. 2013;8:e81113.
Article
PubMed
PubMed Central
Google Scholar
Laperle A, Masters KS, Palecek SP. Influence of substrate composition on human embryonic stem cell differentiation and extracellular matrix production in embryoid bodies. Biotechnol Prog. 2015;31:212–9.
Article
CAS
PubMed
Google Scholar
Moon SH, Ju J, Park SJ, Bae D, Chung HM, Lee SH. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies. Biomaterials. 2014;35:5987–97.
Article
CAS
PubMed
Google Scholar
Boldrin L, Elvassore N, Malerba A, Flaibani M, Cimetta E, Piccoli M, Baroni MD, Gazzola MV, Messina C, Gamba P, et al. Satellite cells delivered by micro-patterned scaffolds: a new strategy for cell transplantation in muscle diseases. Tissue Eng. 2007;13:253–62.
Article
CAS
PubMed
Google Scholar
Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 2010;31:4360–6.
Article
CAS
PubMed
Google Scholar
Cosson S, Lutolf MP. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sci Rep. 2014;4:4462.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gingras J, Rioux RM, Cuvelier D, Geisse NA, Lichtman JW, Whitesides GM, Mahadevan L, Sanes JR. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J. 2009;97:2771–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
English A, Azeem A, Spanoudes K, Jones E, Tripathi B, Basu N, McNamara K, Tofail SAM, Rooney N, Riley G, et al. Substrate topography: a valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomater. 2015;27:3–12.
Article
CAS
PubMed
Google Scholar
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, et al. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine. 2015;10:693–711.
Article
CAS
PubMed
Google Scholar
Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.
Article
CAS
PubMed
Google Scholar
Xia Y, Whitesides GM. Soft Lithography. Annu Rev Mater Res. 1998;28:153–84.
CAS
Google Scholar
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103:2480–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Austin RH. Applications of microfluidics in stem cell biology. Biogeoscience. 2012;2:277–86.
Google Scholar
Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.
Article
CAS
PubMed
Google Scholar
Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.
Article
CAS
PubMed
Google Scholar
Sanvicens N, Marco MP. Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425–33.
Article
CAS
PubMed
Google Scholar
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.
Article
PubMed
PubMed Central
Google Scholar
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116:2826–85.
Article
CAS
PubMed
Google Scholar
Prasek J, Chomoucka J, Hubalek J, Jasek O, Adamc V, Kizek R. Methods for carbon nanotubes synthesis—review. J Mater Chem. 2011;21:15872–84.
Article
CAS
Google Scholar
Shao W, Arghya P, Yiyong M, Rodes L, Prakash S. Carbon nanotubes for use in medicine: potentials and limitations. Croatia: InTech; 2013.
Google Scholar
Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9:393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stout DA, TJW. Carbon nanotubes for stem cell control. Materialstoday. 2012;15:312–8.
CAS
Google Scholar
Kawaguchi M, Fukushima T, Hayakawa T, Nakashima N, Inoue Y, Takeda S, Okamura K, Taniguchi K. Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J. 2006;25:719–25.
Article
CAS
PubMed
Google Scholar
Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J. Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun. 2009;384:426–30.
Article
CAS
PubMed
Google Scholar
Liao H, Paratala B, Sitharaman B, Wang Y. Applications of carbon nanotubes in biomedical studies. Methods Mol Biol. 2011;726:223–41.
Article
CAS
PubMed
Google Scholar
Brady MA, Renzing A, Douglas TE, Liu Q, Wille S, Parizek M, Bacakova L, Kromka A, Jarosova M, Godier G, Warnkel PH. Development of composite poly(lactide-co-glycolide)- nanodiamond scaffolds for bone cell growth. J Nanosci Nanotechnol. 2015;15:1060–9.
Article
CAS
PubMed
Google Scholar
Kumar S, Raj S, Sarkar K, Chatterjee K. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale. 2016;8:6820–36.
Article
CAS
PubMed
Google Scholar
Fernández-García M, Rodriguez JA. Metal oxide nanoparticles In: Encyclopedia of inorganic chemistry. John Wiley & Sons Ltd; 2011. doi:10.1002/9781119951438.eibc0331.
Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Stem Cell Res Ther. 2015;6:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shapiro EM. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med. 2015;73:376–89.
Article
CAS
PubMed
Google Scholar
Hachani R, Lowdell M, Birchall M, Thanh NT. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale. 2013;5:11362–73.
Article
CAS
PubMed
Google Scholar
Ito A, Hibino E, Honda H, Hata K-I, Kagami H, Ueda M, Kobayashi T. A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. Biochem Eng J. 2004;20:119–25.
Article
CAS
Google Scholar
Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30:3645–51.
Article
CAS
PubMed
Google Scholar
Delcroix GJ, Jacquart M, Lemaire L, Sindji L, Franconi F, Le Jeune JJ, Montero-Menei CN. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res. 2009;1255:18–31.
Article
CAS
PubMed
Google Scholar
Zhang W, Jiang P, Chen W, Zheng B, Mao Z, Antipov A, Correia M, Larsen EH, Gao C. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells. J Nanosci Nanotechnol. 2016;16:5489–97.
Article
CAS
PubMed
Google Scholar
Chau DYS, Agashi K, Shakesheff KM. Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol. 2008;24:1031–44.
Article
CAS
Google Scholar
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12:1–39.
Article
CAS
Google Scholar
Manuel CM, Ferraz MP, Monteiro FJ. Synthesis of hydroxyapatite and tricalcium phosphate nanoparticles—preliminary studies. Key Eng Mater. 2003;240-242:555-58.
Huang DM, Chung TH, Hung Y, Lu F, Wu SH, Mou CY, Yao M, Chen YC. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol. 2008;231:208–15.
Article
CAS
PubMed
Google Scholar
Kim KJ, Joe YA, Kim MK, Lee SJ, Ryu YH, Cho DW, Rhie JW. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation. Int J Nanomedicine. 2015;10:2261–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung Y, Chung YI, Kim SH, Tae G, Kim YH, Rhie JW, Kim SH, Kim SH. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Biomaterials. 2009;30:4657–64.
Article
CAS
PubMed
Google Scholar
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.
Article
CAS
PubMed
Google Scholar
Collins MC, Gunst PR, Cascio WE, Kypson AP, Muller-Borer BJ. Labeling and imaging mesenchymal stem cells with quantum dots. Methods Mol Biol. 2012;906:199–210.
CAS
PubMed
Google Scholar
Lin S, Xie X, Patel MR, Yang YH, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH, Wu JC. Quantum dot imaging for embryonic stem cells. BMC Biotechnol. 2007;7:67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Danner S, Benzin H, Vollbrandt T, Oder J, Richter A, Kruse C. Quantum dots do not alter the differentiation potential of pancreatic stem cells and are distributed randomly among daughter cells. Int J Cell Biol. 2013;2013:12.
Article
CAS
Google Scholar
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20:1–11.
PubMed
PubMed Central
Google Scholar
Moeinzadeh S, Jabbari E. Nanostructure formation in hydrogels. In: Handbook of nanomaterials properties. doi.org/10.1007/978-3-642-31107-9_62.
Chung HJ, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today. 2009;4:429–37.
Article
CAS
Google Scholar
Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25:1339–48.
Article
PubMed
CAS
Google Scholar
Li Y, Yang C, Khan M, Liu S, Hedrick JL, Yang YY, Ee PL. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Biomaterials. 2012;33:6533–41.
Article
CAS
PubMed
Google Scholar
Montoro SR, Medeiros SF, Alves GM. Nanostructured hydrogels (chapter 10). In: Nanostructured polymer blends. Oxford: William Andrew Publishing; 2014. p. 325–55.
Chapter
Google Scholar
Gelain F, Cigognini D, Caprini A, Silva D, Colleoni B, Donega M, Antonini S, Cohen BE, Vescovi A. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering. Nanoscale. 2012;4:2946–57.
Article
CAS
PubMed
Google Scholar
Lee JH, Lee KM, Baek HR, Jang SJ, Lee JH, Ryu HS. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model. Biomed Mater. 2011;6:015008.
Article
PubMed
CAS
Google Scholar
Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med. 2015. doi:10.1002/term.2023.
Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107:4872–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006;103:16095–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13:558–69.
Article
CAS
PubMed
Google Scholar
Harris GM, Piroli ME, Jabbarzadeh E. Deconstructing the effects of matrix elasticity and geometry in mesenchymal stem cell lineage commitment. Adv Funct Mater. 2014;24:2396–403.
Article
CAS
PubMed
Google Scholar
Guan J-L. Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol. 1997;29:1085–96.
Article
CAS
PubMed
Google Scholar
Lehoux S, Esposito B, Merval R, Tedgui A. Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation. 2005;111:643–9.
Article
CAS
PubMed
Google Scholar
Sastry SK, Burridge K. Focal Adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res. 2000;261:25–36.
Article
CAS
PubMed
Google Scholar
Schlaepfer DD, Hanks SK, Hunter T, Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994;372:786–91.
Article
CAS
PubMed
Google Scholar
Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 1998;94:625–34.
Article
CAS
PubMed
Google Scholar
Cabodi S, Moro L, Bergatto E, Boeri Erba E, Di Stefano P, Turco E, Tarone G, Defilippi P. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans. 2004;32:438–42.
Article
CAS
PubMed
Google Scholar
Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie. 2005;87:51–6.
Article
CAS
PubMed
Google Scholar
Chen YC, Lee DC, Tsai TY, Hsiao CY, Liu JW, Kao CY, Lin HK, Chen HC, Palathinkal TJ, Pong WF, et al. Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials. 2010;31:5575–87.
Article
CAS
PubMed
Google Scholar
Wang W, Liu Q, Zhang Y, Zhao L. Involvement of ILK/ERK1/2 and ILK/p38 pathways in mediating the enhanced osteoblast differentiation by micro/nanotopography. Acta Biomater. 2014;10:3705–15.
Article
CAS
PubMed
Google Scholar
Jiang T, Guo L, Ni S, Zhao Y. Upregulation of cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on magnesium alloy surface coating with tricalcium phosphate. J Mater Sci Mater Med. 2015;26:158.
Article
PubMed
CAS
Google Scholar
Yi C, Liu D, Fong CC, Zhang J, Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano. 2010;4:6439–48.
Article
CAS
PubMed
Google Scholar
Chen HC, Guan JL. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1994;91:10148–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paling NRD, Wheadon H, Bone HK, Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem. 2004;279:48063–70.
Article
CAS
PubMed
Google Scholar
Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441:518–22.
Article
CAS
PubMed
Google Scholar
Storm MP, Bone HK, Beck CG, Bourillot P-Y, Schreiber V, Damiano T, Nelson A, Savatier P, Welham MJ. Regulation of nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem. 2007;282:6265–73.
Article
CAS
PubMed
Google Scholar
Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem. 2005;280:16546–9.
Article
CAS
PubMed
Google Scholar
Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 2003;115:145–67.
Article
CAS
PubMed
Google Scholar
Sudha B, Jasty S, Krishnan S, Krishnakumar S. Signal transduction pathway involved in the ex vivo expansion of limbal epithelial cells cultured on various substrates. Indian J Med Res. 2009;129:382–9.
CAS
PubMed
Google Scholar
Woo KM, Seo J, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28:2622–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Lin CY, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials. 2009;30:4063–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
He B, Liu SQ, Chen Q, Li HH, Ding WJ, Deng M. Carboxymethylated chitosan stimulates proliferation of Schwann cells in vitro via the activation of the ERK and Akt signaling pathways. Eur J Pharmacol. 2011;667:195–201.
Article
CAS
PubMed
Google Scholar
Chen K-D, Li Y-S, Kim M, Li S, Yuan S, Chien S, Shyy JY-J. Mechanotransduction in response to shear stress: roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999;274:18393–400.
Article
CAS
PubMed
Google Scholar
Wang C, Lin K, Chang J, Sun J. Osteogenesis and angiogenesis induced by porous beta-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials. 2013;34:64–77.
Article
PubMed
CAS
Google Scholar
Kundu AK, Khatiwala CB, Putnam AJ. Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng Part A. 2009;15:273–83.
Article
CAS
PubMed
Google Scholar
DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12:308–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 2012;41:519–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–95.
Article
CAS
PubMed
Google Scholar
Parekh SH, Chatterjee K, Lin-Gibson S, Moore NM, Cicerone MT, Young MF, Simon Jr CG. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials. 2011;32:2256–64.
Article
CAS
PubMed
Google Scholar
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005;280:11626–34.
Article
CAS
PubMed
Google Scholar
Muroyama Y, Kondoh H, Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun. 2004;313:915–21.
Article
CAS
PubMed
Google Scholar
Jansen JH, Eijken M, Jahr H, Chiba H, Verhaar JA, van Leeuwen JP, Weinans H. Stretch-induced inhibition of Wnt/beta-catenin signaling in mineralizing osteoblasts. J Orthop Res. 2010;28:390–6.
CAS
PubMed
Google Scholar
Crampton SP, Wu B, Park EJ, Kim J-H, Solomon C, Waterman ML, Hughes CCW. Integration of the β-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS ONE. 2009;4:e7841.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oloumi A, Syam S, Dedhar S. Modulation of Wnt3a-mediated nuclear [beta]-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oncogene. 2006;25:7747–57.
Article
CAS
PubMed
Google Scholar