Rivière I, Roy K. Perspectives on manufacturing of high-quality cell therapies. Mol Ther. 2017;25:1067–8. https://doi.org/10.1016/j.ymthe.2017.04.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison RP, Ruck S, Medcalf N, Rafiq QA. Decentralized manufacturing of cell and gene therapies, overcoming challenges and identifying opportunities. Cytotherapy. 2017;19:1140–51.
Article
PubMed
Google Scholar
Zylberberg C, Charo A, Haddock R, Lin-Gibson S, Lumelsky N, Petersen T, et al. Manufacturing cell therapies: the paradigm shift in healthcare of this century. NAM Perspect. 2017; in press. https://doi.org/10.31478/201706c.
Harrison RP, Medcalf N, Rafiq QA. Cell therapy processing economics: small scale micro-factories as a stepping stone towards large scale macro-factories. Regen Med. 2018;13(2):159–73. https://doi.org/10.2217/rme-2017-0103.
Article
CAS
PubMed
Google Scholar
Rowley J, Abraham E, Campbell A, Brandwein H, Oh S. Meeting lot-size challenges of manufacturing adherent cells for therapy. Bioprocess Int. 2012;10:16–22.
CAS
Google Scholar
El Haj AJ, Glossop JR, Sura HS, Lees MR, Hu B, Wolbank S, et al. An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling. J Tissue Eng Regen Med. 2015;9:724–33. https://doi.org/10.1002/term.1636.
Article
CAS
PubMed
Google Scholar
Tang KS, Hann B, Shapiro EM. On the use of micron-sized iron oxide particles (MPIOS) to label resting monocytes in bone marrow. Mol Imaging Biol. 2011;13:819–24. https://doi.org/10.1007/s11307-010-0437-3.
Article
PubMed
PubMed Central
Google Scholar
Kolosnjaj-Tabi J, Wilhelm C, Clément O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology. 2013;11(Suppl 1):S7. https://doi.org/10.1186/1477-3155-11-S1-S7.
Article
PubMed
PubMed Central
Google Scholar
Elias A, Tsourkas A. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Nanotechnol Haematol. 2009;1:720–6.
Google Scholar
Gilchrist R, Medal R. Selective inductive heating of lymph nodes. Ann Surg. 1957;146:596–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pankhurst CJ, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D. 2003;36:167.
Article
Google Scholar
Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. 2009;224001:1–15. https://doi.org/10.1088/0022-3727/42/22/224001.
Article
Google Scholar
Cohen Y, Shoushan SY. Magnetic nanoparticles-based diagnostics and theranostics. Curr Opin Biotechnol. 2013;24(4):672–81. https://doi.org/10.1016/j.copbio.2013.01.006.
Article
CAS
PubMed
Google Scholar
Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, et al. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C. 2013;33:3786–94. https://doi.org/10.1016/j.msec.2013.05.009.
Article
CAS
Google Scholar
Riedinger A, Guardia P, Curcio A, Garcia M a, Cingolani R, Manna L, et al. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett. 2013;13:2399–406. https://doi.org/10.1021/nl400188q.
Article
CAS
PubMed
Google Scholar
Glover AL, Bennett JB, Pritchett JS, Nikles SM, Nikles DE, Nikles J a, et al. Magnetic heating of Iron oxide nanoparticles and magnetic micelles for cancer therapy. IEEE Trans Magn. 2013;49:231–5. https://doi.org/10.1109/TMAG.2012.2222359.
Article
PubMed
PubMed Central
Google Scholar
Shapiro E, Skrtic S, Sharer K, Hill J, Dunbar C, Koretsky A. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A. 2004;101:10901–6. https://doi.org/10.1073/pnas.0403918101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki H, Tanaka N, Nakanishi K, Nishida K, Hamasaki T, Yamada K, Ochi M. Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine. 2011;36(12):933–8. https://doi.org/10.1097/BRS.0b013e3181eb9fb0.
Article
PubMed
Google Scholar
Borthakur a, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil. 2000;8:288–93. https://doi.org/10.1053/joca.1999.0303.
Article
CAS
Google Scholar
Hughes S, El Haj AJ, Dobson J. Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med Eng Phys. 2005;27:754–62. https://doi.org/10.1016/j.medengphy.2005.04.006.
Article
PubMed
Google Scholar
Strijkers G, Mulder M, Willem J, Van Tilborg F, Geralda A, Nicolay K. MRI contrast agents: current status and future perspectives. Anti Cancer Agents Med Chem. 2007;7:291–305. https://doi.org/10.2174/187152007780618135.
Article
CAS
Google Scholar
Akella SV, Regatte RR, Gougoutas aJ, Borthakur a, Shapiro EM, Kneeland JB, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med. 2001;46:419–23. https://doi.org/10.1002/mrm.1208.
Article
CAS
PubMed
Google Scholar
Dick AJ. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation. 2003;108:2899–904. https://doi.org/10.1161/01.CIR.0000095790.28368.F9.
Article
PubMed
PubMed Central
Google Scholar
Chen H, Kaminski MD, Pytel P, Macdonald L, Rosengart AJ. Capture of magnetic carriers within large arteries using external magnetic fields. J Drug Target. 2008;16:262–8. https://doi.org/10.1080/10611860801900892.
Article
CAS
PubMed
Google Scholar
Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, Garcia-Prieto A, Price AN, Martin JF, et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc Interv. 2009;2:794–802. https://doi.org/10.1016/j.jcin.2009.05.014.
Article
PubMed
Google Scholar
Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, et al. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 2006;48:1839–45. https://doi.org/10.1016/j.jacc.2006.06.069.
Article
CAS
PubMed
Google Scholar
Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A. 2008;105:698–703. https://doi.org/10.1073/pnas.0708338105.
Article
PubMed
PubMed Central
Google Scholar
Riegler J, Wells JA, Kyrtatos PG, Price AN, Pankhurst QA, Lythgoe MF. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials. 2010;31:5366–71. https://doi.org/10.1016/j.biomaterials.2010.03.032.
Article
CAS
PubMed
Google Scholar
Landázuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic Iron oxide nanoparticles. Small. 2013;9:4017–26. https://doi.org/10.1002/smll.201300570.
Article
CAS
PubMed
Google Scholar
Cheng L, Wang C, Ma X, Wang Q, Cheng Y, Wang H, et al. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater. 2013;23:272–80. https://doi.org/10.1002/adfm.201201733.
Article
CAS
Google Scholar
Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21:1137–48. https://doi.org/10.3727/096368911X627435.
Article
PubMed
Google Scholar
Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, et al. Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng. 2005;11:489–96. https://doi.org/10.1089/ten.2005.11.489.
Article
CAS
PubMed
Google Scholar
Nishida K, Tanaka N, Nakanishi K, Kamei N, Hamasaki T, Yanada S, et al. Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. Neuroreport. 2006;17:1269–72. https://doi.org/10.1097/01.wnr.0000227993.07799.a2.
Article
PubMed
Google Scholar
Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther. 2004;15:351–60. https://doi.org/10.1089/104303404322959506.
Article
CAS
PubMed
Google Scholar
Forte A, Finicelli M, Mattia M, Berrino L, Rossi F, De Feo M, et al. Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. J Cell Physiol. 2008;217:789–99. https://doi.org/10.1002/jcp.21559.
Article
CAS
PubMed
Google Scholar
Wang CH, Cherng WJ, Yang NI, Kuo LT, Hsu CM, Yeh HI, et al. Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol. 2008;28:54–60. https://doi.org/10.1161/ATVBAHA.107.147256.
Article
CAS
PubMed
Google Scholar
Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. Pharm Ther. 2012;37:582–91.
Google Scholar
Harrison R, Markides H, Morris RH, Richards P, El Haj AJ, Sottile V, et al. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications. J Tissue Eng Regen Med. 2016;11:2333–48. https://doi.org/10.1002/term.
Article
PubMed
PubMed Central
Google Scholar
Sottile V, Thomson A, McWhir J. In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells. 2003;5:149–55. https://doi.org/10.1089/153623003322234759.
Article
CAS
PubMed
Google Scholar
Ahmad A, Strohbuecker S, Tufarelli C, Sottile V. Expression of a SOX1 overlapping transcript in neural differentiation and cancer models. Accept Publ Cell Mol Life Sci. 2017;74:4245–58. https://doi.org/10.1007/s00018-017-2580-3.
Article
CAS
Google Scholar
Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. https://doi.org/10.1038/nmeth.2999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101:12130–5. https://doi.org/10.1073/pnas.0404720101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Park P, Lin C-Y. Characterization of stem cell attributes in human osteosarcoma cell lines. Cancer Biol Ther. 2009;8:543–52. https://doi.org/10.4161/cbt.8.6.7695.
Article
CAS
PubMed
Google Scholar
Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973;33:2643–52.
CAS
PubMed
Google Scholar
Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–49.
Article
CAS
PubMed
Google Scholar
Markides H, Kehoe O, Morris RH, El Haj AJ. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells—a rheumatoid arthritis mouse model. Stem Cell Res Ther. 2013;4:1–14. https://doi.org/10.1186/scrt337.
Article
CAS
Google Scholar
ThermoFisher Scientific. Actin staining protocol 2017. https://www.thermofisher.com/uk/en/home/references/protocols/cell-and-tissue-analysis/protocols/actin-green-488-readyprobes-protocol.html. Accessed 25 Aug 2017.
Google Scholar
Wang Y-H, Liu Y, Maye P, Rowe DW. Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog. 2006;22:1697–701. https://doi.org/10.1021/bp060274b.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal R, Hanwate M, Totey SM. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J Tissue Eng Regen Med. 2008;2:436–44. https://doi.org/10.1002/term.109.
Article
CAS
PubMed
Google Scholar
Heathman TRJ, Nienow W, Mccall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med. 2015;10(1):49–64. https://doi.org/10.2217/rme.14.73.
Article
CAS
PubMed
Google Scholar
Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics. 2013;3(12):986–1003. https://doi.org/10.7150/thno.4827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013;3:595–615. https://doi.org/10.7150/thno.5366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison RP, Rafiq QA, Medcalf N. Automating decentralized manufacturing of cell & gene therapy products. Cell Gene Ther Insights. 2016;2:115–20. https://doi.org/10.18609/cgti.2016.014.
Article
Google Scholar
Hourd P, Chandra A, Medcalf N, Williams DJ. Regulatory challenges for the manufacture and scale-out of autologous cell therapies. StemBook, ed. The Stem Cell Research Community, StemBook. 2014; https://doi.org/10.3824/stembook.1.96.1.
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14:1568–73. https://doi.org/10.1023/A:1012126301290.
Article
CAS
PubMed
Google Scholar
Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71:39–51. https://doi.org/10.1016/S0168-3659(00)00358-8.
Article
CAS
PubMed
Google Scholar
Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41:4306–34. https://doi.org/10.1039/c2cs15337h.
Article
CAS
PubMed
Google Scholar
Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:2161–75. https://doi.org/10.1039/b402025a.
Article
CAS
Google Scholar
Yang F, Yang L, Li Y, Yan G, Feng C, Liu T, et al. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J Pineal Res. 2017;63:1–18. https://doi.org/10.1111/jpi.12422.
Article
CAS
Google Scholar
Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther. 2012;3:1–12. https://doi.org/10.1186/scrt104.
Article
CAS
Google Scholar
Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012:1–11. https://doi.org/10.1155/2012/614094.
Article
CAS
Google Scholar
Zhao SX, Zhang G, Trewyn BG, Slowing II, Lin VS-Y. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano. 2011;5:1366–75. https://doi.org/10.1021/nn103077k.
Article
CAS
PubMed
Google Scholar
Slowing II, Wu C-W, Vivero-Escoto JL, Lin VS-Y. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small. 2009;5:57–62. https://doi.org/10.1002/smll.200800926.
Article
CAS
PubMed
Google Scholar
Wiogo HTR, Lim M, Bulmus V, Yun J, Amal R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir. 2011;27:843–50. https://doi.org/10.1021/la104278m.
Article
CAS
PubMed
Google Scholar
Laurent S, Burtea C, Thirifays C, Häfeli UO, Mahmoudi M. Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One. 2012;7:e29997. https://doi.org/10.1371/journal.pone.0029997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of nanoparticles on the cell life cycle. Chem Rev. 2011;111(5):3407–32. https://doi.org/10.1021/cr1003166.
Article
CAS
PubMed
Google Scholar
Shimizu K, Ito A, Lee J-K, Yoshida T, Miwa K, Ishiguro H, et al. Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnol Bioeng. 2007;96:803–9. https://doi.org/10.1002/bit.21094.
Article
CAS
PubMed
Google Scholar
Schäfer R, Bantleon R, Kehlbach R, Siegel G, Wiskirchen J, Wolburg H, et al. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biol. 2010;11:22. https://doi.org/10.1186/1471-2121-11-22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berman SC, Galpoththawela C, Gilad AA, Bulte JWM, Walczak P. Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med. 2011;65:564–74. https://doi.org/10.1002/mrm.22613.
Article
PubMed
Google Scholar
Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003;228:480–7. https://doi.org/10.1148/radiol.2281020638.
Article
PubMed
Google Scholar
Timmins NE, Palfreyman E, Marturana F, Dietmair S, Luikenga S, Lopez G, et al. Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells. Biotechnol Bioeng. 2009;104:832–40. https://doi.org/10.1002/bit.22433.
Article
CAS
PubMed
Google Scholar
Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, et al. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng. 2014;111:69–83. https://doi.org/10.1002/bit.25008.
Article
CAS
PubMed
Google Scholar
Di Maggio N, Martella E, Meikle S, Columbaro M, Lucarelli E, Santin M, et al. Rapid and efficient magnetization of mesenchymal stem cells by dendrimer-functionalized magnetic nanoparticles. Nanomedicine. 2016;11:1519–34. https://doi.org/10.2217/nnm-2016-0085.
Article
CAS
Google Scholar
Correia C, Koshkin A, Carido M, Espinha N, Šarić T, Lima PA, et al. Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Transl Med. 2016;5:658–69. https://doi.org/10.5966/sctm.2015-0238.
Article
PubMed
PubMed Central
Google Scholar
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods. 2012;18:453–63. https://doi.org/10.1089/ten.tec.2011.0395.
Article
CAS
PubMed
Google Scholar
El Akabawy G, Rattray I, Gale R, Bates G, Modo M, Neuroscience B. Implantation of undifferentiated and predifferentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington’s disease. BMC Neurosci. 2012;13 https://doi.org/10.1186/1471-2202-13-97.
Article
PubMed
PubMed Central
Google Scholar
Umashankar A, Corenblum MJ, Ray S, Valdez M, Yoshimaru ES, Trouard TP, et al. Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation. Int J Nanomedicine. 2016;11:1731–48. https://doi.org/10.2147/IJN.S102006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madhavan L. Redox-based regulation of neural stem cell function and Nrf2. Biochem Soc Trans. 2015;43:627–31. https://doi.org/10.1042/BST20150016.
Article
CAS
PubMed
Google Scholar
Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interf Sci. 2013;201–202:18–29. https://doi.org/10.1016/j.cis.2013.10.013.
Article
CAS
Google Scholar
Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003;102:867–72. https://doi.org/10.1182/blood-2002-12-3669.
Article
CAS
PubMed
Google Scholar
Coopman K, Medcalf N. From production to patient: challenges and approaches for delivering cell therapies. StemBook, ed. The StemCell Research Community, StemBook. https://doi.org/10.3824/stembook.1.97.1.