Skip to main content

Recycle the dental fairy’s package: overview of dental pulp stem cells

Abstract

Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.

Background

Stem cell (SC) was firstly termed and reported in the literature in the nineteenth century by Alexander Maksimov [64]. During the advancement of the stem cell filed, various types of stem cells were discovered in different tissues including dental pulps. One of them called dental pulp stem cells (DPSCs) were discovered by Dr. Irina Kerkis as adult stem cells in 2005, and then immature dental pulp stem cells (IDPSCs) were discovered through dental pulp organ culture as a pluripotent subpopulation of DPSCs in 2006 [34]. Bone marrow stem cells (BMSCs) were derived from the bone marrow, which was the most widely studied stem cell. As not one kind of BMSCs, DPSCs were derived from the dental pulp but not from the bone marrow. Researches have been trying to compare the differences between them. Kim et al. focused on exploring the gene expression profile in DPSCs and BMSCs by Gene expression analysis and found different upregulated and downregulated transcripts in DPSCs compared to BMSCs [35]. Kumar et al. focused on the secretome of neurogenic potential of DPSCs and BMSCs, pointed out that DPSCs was a better stem cell sources in neural lineage differentiation [38]. Moreover, Tamaki et al. compared the proliferative and clonogenic potentials between DPSCs and BMSCs, claiming that the DPSCs from the teeth possessed greater proliferative potential [71]. When comparing the odontogenic capability, DPSCs showed more striking odontogenic capability than BMSCs, which suggested more suitable candidate cells for tooth regeneration [86].

The two shining points of SC are its pluripotency and differentiation ability, so as DPSCs. The DPSCs have high proliferative potential which shows a strong cloning ability, originating from dental pulp genesis (Fig. 1) [83, 89]. During the development, the dental pulp consists of both mesenchymal and ectodermic components, including neural crest cells with plasticity and multipotential ability. Researchers compared DPSCs with stem cells from human exfoliated deciduous (SHEDs) and bone marrow stem cells (BMSCs) finding that DPSCs showed a more mature phenotype than SHEDs [19] and higher proliferation rate than BMSCs [52]. More recent studies indicated that DPSCs may exist in perivascular areas [67].

Fig. 1
figure1

Dental pulp stem cell origins and applications

The most obvious advantages of DPSCs are its highly proliferative capacity and differentiation possibility into various cells including epithelial cells, vascular cells, adipocytes, odontoblasts, osteoblasts, neuronal cells, and muscular cells. As the dental pulp is one of the major sites when considering bone marrow as the choice for hematopoietic stem cell collection, DPSCs are considered to be the ideal source for clinical application and tissue engineering [4]. DPSCs’ cryopreserved character of the time-dependent manner is another advantage to its application [70]. As for the feasible availability, DPSCs could be obtained from orthodontic extraction teeth or wisdom teeth in a common surgical and non-invasive practice. Moreover, it can be easily passaged for more than 80 passages keeping the differentiation capacity [39, 40].

In order to better understand DPSCs’ character for further applications, many strategies have been developed to isolate DPSCs from adult dental pulp [68, 80]. One of the clinical studies has already adopted DPSCs for clinical alveolar bone reconstruction using patients’ own dental stem cells [3].

Isolation, culture, and cryopreservation of DPSCs

In adult stem cell isolation, the key points are dissociation methods and selection markers. The dissociation method led the vitality of the stem cells, while the selection markers led the purity. Two main approaches have been applied for DPSCs dissociation, one is directly from pulp tissue (DPSC-ED) and the other one is outgrowth from tissue explants (DPSC-OG). Over 20 different enzymes and their combinations were considered during the DPSC dissociation methods. Collagenase I associated with dispase and collagenase alone were the most frequently used methods [16]. A recent research showed it will enrich more cells with CD146+, which were considered as the mainly DPSCs marker, as well as osteogenic and chondrogenic ability [14]. For the DPSC dissociation from the tissue explants outgrowth, although different enzymes showed different influences, studies claimed that the size of tissue fragments has no influence on osteoblast outgrowth [73]. By comparing DPSC-ED with DPSC-OG, it suggested that DPSC-ED have higher mineralization capacity while Hilkens and collaborators showed both DPSC-ED and DPSC-OG could successfully differentiate into adipogenic, chondrogenic, and osteogenic cell types [22]. However, it is related to the long migration time of cells from pulp tissue, so more than half studies adopted the enzymatic technique.

Unlike the dissociation method, the DPSC culture method still needs further development. The most common basal medium is α-MEM followed by DMEM. For the further application purpose, Serum-free media have been continuously tested for stem cell culture. Guo and his group established a chemically defined serum-free culture system for human dental pulp stem cells and found the serum-free Essential 8 medium might be applicable for hDPSCs culture in the future [81]. However, some researches indicated that these media do not adequately support DPSC proliferation and differentiation. As a consequence, various human blood derivatives have been proposed as alternatives to animal serum for stem cell culture, which includes autologous or allogenic human serum, human plasma, and human platelet lysates (PL) and their released factors. Marrazzo P and his group found that a low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs in vitro [49]. Also, additional PL was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs.

As mentioned before, DPSCs’ cryopreserved character is the necessary advantage for cell-based therapy. Gianpaolo Papaccio and his group demonstrated DPSCs and their osteoblast-derived cells can be long-term cryopreserved [61]. Lindemann and his group found that DPSCs were obtained from cryopreserved intact deciduous teeth without changes in the immunophenotypical characteristics and differentiation ability [47]. Nam Cong-NhatHuynh and his group revealed that controlled-rate freezing in 5% DMSO gave the highest rate of cell viability [37]. Recently, magnetic cryopreservation has been successfully used for tooth banking with satisfactory implantation outcomes [42].

DPSCs differentiation

Differentiation ability is another key character of stem cell, so does DPSCs. As one kind of adult stem cells, the most key differentiation potential is the purpose tissue or cells itself. To DPSCs, it means odontoblasts. After transplanting into immune-compromised mice, human DPSCs will automatically differentiate into the dentin-like structure with odontoblast-like cells [20]. By seeding on chemically and mechanically treated dentin surface, DPSC-derived tissues also showed odontoblast-like morphology formation with dentinal tubule through scanning electron microscopy [24, 75]. Additionally, the increase of dentin matrix component-related genes, such as dentin matrix protein 1 (DMP-1) and dentin sialophosphoprotein (DSPP) expression double, confirmed odontoblasts differentiation results [11]. In the process of odontoblasts differentiation, research showed the notch signaling pathway [90] may help to induced angiogenesis and differentiate to regenerate vascularized dental pulp [41, 85].

DPSCs have also been proved to differentiate into other cell types including all three germ layers. The detailed information of differentiation methods and checking notes were shown in Table 1. Mesoderm lineage differentiation was well established including osteocytes, adipogenic, and chondrogenic. Experiments showed DPSC osteo-differentiation both in vivo and in vitro. Genetic profiles between DPSCs and normal osteoblasts identified functional gene activities changed including adhesion and cytoskeletal elements production regulation [6]. Adipogenic differentiation from hDPSCs has been confirmed by several studies, including direct culture in adipo-inductive medium supplied with dexamethasone [21, 33, 52]. By using hDPSCs from human unerupted third molars with completely formed crown but without well-developed roots, the differentiated cells were stained positively with Oil-Red-O and expressed adipocyte-specific genes such as PPAR-A2 and ap2 detected via RT-PCR analysis [82]. By ascorbate-2-phosphate and transforming growth factor (TGF)-b1 induction or co-cultured with human costal chondrocytes (CCs), the DPSCs will go chondrogenic differentiation and improve the cartilage formation.

Table 1 Detailed information about the differentiation of dental pulp stem cells

The ectoderm or endoderm lineage cells differentiated from DPSCs have also been reported. DPSCs express high expression of various neural crest-related and neural crest developmental genes since they are derived from neural crest origin [32, 52]. DPSC neurogenesis is highly related with FGF signal pathway. By inducing with bFGF, the neurogenic markers and neurosphere sizes of DPSCs have been upregulated. On the other hand, if inhibits FGF receptors, the neuronal differentiation of DPSCs will decrease.

A hepatic lineage of cells has been differentiated from human dental pulp cells although the purity was not very high [29]. More and more methods are tried in order to get purer hepatic lineage, and a novel protocol has been modified for hepatic differentiation in vitro from DPSCs and SHEDs. Moreover, their differentiation can last for a long time after 70 populations and DPSCs might not be as good as SHEDs considering as the hepatic progenitor source [30]. Besides, the CD117-positive cells may be used as the marker for hepatogenic lineage differentiation, which is adopted for future transplantations.

Application of DPSCs and tissue engineering applications

Application of DPSCs

DPSCs can be used in various aspects such as tissue engineering and regenerative medicine owing to their high proliferative and multilineage differentiated ability [25, 58]. It is an alternative choice for iPSC to solve the problems in re-programming and epigenetic changes [13, 79]. Dental stem cell therapy adopts the multidirectional differentiation character to reconstruct normal cell function or repair disease cells [7].

The first successful example is treating spinal cord injury (SCI) which leads to sensation loss and extremities paralysis. Comparing with BMSC and AMSC, DPSCs could enhance the survival rate of endogenous glia and neurons [65] owing to its secretion of NTF titres [50] after transplantation. DPSCs were also applied in treating traumatic brain injury (TBI) and stroke. In a focal cerebral ischemia rat model, DPSCs helped to improve forelimb sensorimotor function after transplantation. Rather than neurons, DPSCs could also contribute into glia, which may mediate paracrine pathway opposite to replacing the neurons that lost during ischemic damage directly [44]. Another evidence for improving TBI repair is that the pre-differentiated DPSC could migrate to different brain areas including the lesion region and then adopt a neuronal phenotype that expresses functional potassium and sodium currents [36]. Another popular application for stem cell regeneration is the treatment of retinal repair in ocular diseases. It has already been proved that DPSC can differentiate into photoreceptor phenotype when exposed to a conditioned medium of lesioned organotypic retinal cultures [5]. The animal experiment showed the possibility of human DPSC can decrease the RGF loss in glaucoma which elevated intraocular pressure [51]. It is even reported to treat radioactive esophageal injury by regenerating esophageal tissues [87].

Moreover, DPSCs may involve in deciduous teeth root reabsorption process [84]. Pierdomenico et al. think that DPSCs may have immunosuppressive activity but need future confirmation [62]. More and more studies begin to focus on DPSCs in recent years; thus, many breakthroughs were made in DPSC clinical application and researches while it is still in infancy. More theoretical mechanism and studies are needed for future applications, and lots of technical problems have not been solved. DPSCs cultured together with odontogenic cells via epithelial-mesenchymal interactions may help stem cells adapt to dental cell lineages and make the scaffold matrix become part of teeth [69].

Excitingly, DPSCs have been used in vivo and reported in many articles. Two systematic reviews [10, 53] were published to summarize and synthesize the information. One collected all the in vivo studies which used DPSCs to repair or regenerate non-dental tissues. From the data in 14 eligible studies including in 2309 papers, most of the DPSC application in vivo are successful, while it is still not guaranteed for clinical management [10]. The other one assessed in vivo research on DPSCs efficacy for bone regeneration in animal models. After assessing 17 individual studies, the authors draw conclusions that DPSCs were capable of regenerating the bone in vivo but still need more homogeneous studies to make a precise conclusion [53]. Moreover, Lei et al. carried out in vivo experiment and claimed that DPSCs maintain the MSC characteristics after in vivo implantation and more stable under in vivo conditions compared to PDLSCs [43]. Hilkens et al. evaluated the angiogenic potential of DPSCs in an in vivo model of dental pulp regeneration and demonstrated the successful formation of vascularized pulp-like tissue in 3D-printed scaffolds, which indicates a promising approach in dental tissue engineering [23]. Paino et al. conducted a research in vivo adopting human DPSCs fabricate vascularized woven bone tissue concluding that they can be used for customized regeneration [59]. Besides, a study discovered that 3 years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone, which may have a positive clinical impact [18].

Tissue engineering applications in stem cells

While the shortage of traditional cell culture limits the application of stem cell-based cell therapy, tissue engineering strategies were used to enhance DPSCs in vitro function. By mimicking the physicochemical and biological signal niche, combining the engineering and material methods [41, 54], and rebuilding the feature of destination tissue may be a natural way to help push the regeneration medicine field forward.

Usually, the basic tissue engineering method includes scaffold reconstruction, hydrogel matrix support, and artificial patterning design. These three methods always support each other to develop enhanced complex both in tissue structure and function. Limited by the weak mechanical properties of the hydrogel, scaffolds have usually been fabricated as the framework for cellular behavior and function. For regeneration medicine use, the first consideration of the scaffold material should be the character of non-toxic, less side effects, high biocompatibility, and low immunogenicity. For the engineering tissue preparation, the scaffold material needs to be extensive and the preparation process should be simple and repeatable, as well as environmentally friendly. Undoubtedly, all the above pose-specific problems and challenges for the development of tissue engineering scaffold materials indicate the direction.

Choosing biocompatible materials and designing mimic device will help to enhance cell interaction and stimulating spontaneously regeneration to format self-regulating tissue function, instead of artificially constructing complexity of living tissues ex vivo. The 3D geometrical features, mechanical property, surface feature, and other biocompatibility of materials influence cell adhesion, proliferation, differentiation, and pluripotency maintenance. The different cells in different surrounding materials are able to regulate self-gene expressions and secrete new ECM which will lead the other cells fate determination [45]. A well-designed device also has a similar function, for example, a novel, modular nerve-lengthening device with scaffold giving the imposition of moderate tensile for axonal outgrowth [8]. More and more studies seek to investigate the biological effects of the properties of biomaterials in TE, which is called material biology; it is a new concept draws from material science [45].

Potential applications of DPSC combine with tissue engineering

Combined tissue engineering with DPSC, some approaches towards the regeneration medicine application have already been reported. Base on the serious of the disease and DPSCs’ characters, most of the applications focus on neurology, tooth or bone reconstruction, and angiogenesis, liver, esophageal, or bladder regeneration. Here, we list the examples for hDPSCs combined with tissue engineering in neuro-, bone, and dentin-pulp regeneration.

A study of 3D Floating Sphere Culture System provides a respectable microenvironment for hDPSCs to preserve their neuronal properties significantly compared to osteogenic and myogenic commitments [63]. If the neutrosphere strategy is the simplest application for tissue engineering, the reconstruction of the bone and dentin-pulp are the solid engineering work.

Previous studies have been well demonstrated the osteogenic differentiation capacity of DPSCs, including high expression of bone-specific markers [2]. Scaffold composition and surface properties play a critical role in the proliferation and differentiation of DPSCs. Collagen type I matrix could significantly improve mineral formation; moreover, hydroxyapatite (HA) and tricalcium phosphate (TCP) have been widely applied in increasing osteoconductive in the process of scaffold forming [46, 78]. After being seeded on 3D printing TCP/collagen hybrid for 3 weeks, DPSCs were able to pre-differentiated into osteoblast-like cells accompanying with activated ALP [15]. Also, DPSCs cultured on fibrin, hyaluronic acid, and PEA-C exhibited superior mineralization values than standard tissue culture on TCPs [1].

Root canal therapy is a common treatment for trauma and infection of adult pulp. After root canal therapy, the entire pulp was removed and often followed by tooth fracture and finally lead to loss of teeth. It is noteworthy that DPSCs have the capacity to generate dentin that rendered dentin-pulp regeneration possibility [20]. The process of generating dentin genesis includes odontoblastic deposition, vascularization, and neuron formation. It is reported that DPSCs could differentiate into functional odontoblasts and exhibit angiogenic potential that could be heightened by endothelial cells and endothelin-1 [12, 48]. In an artificial human root canal model, DPSCs in the empty root canal space can generate pulp-like tissue with well-established vascularity and that odontoblast-like cells produce dentin-like hard tissue on the dentinal walls [26].

Moreover, special growth factors and scaffold materials are important factors for improving functional effectiveness in dentin-pulp TE. According to the report, DPSCs that are transplanted with stromal cell-derived factor 1 (SDF1) in a collagen scaffold could complete pulp regeneration in a canine pulpitis model [27]. In addition, regenerated pulp tissue induced by granulocyte colony-stimulating factor (G-CSF) treatment was formed in the coronal part and prevented microleakage up to day 180 in a dog pulp-ectomized tooth model [28]. Reciprocally, a recent research put scaffold-free 3D DPSC with sheet-like aggregate shapes with a thermo-responsive hydrogel into the human tooth root canal and implanted subcutaneously into immunodeficient mice. After 6-week implantation, pulp-like tissues with rich blood vessels were observed and blood vessel-rich pulp-like tissues can be formed with DPSCs without adding growth factors and scaffolds [31].

Conclusion and challenges

As a promising cell source for numerous and varied regenerative medicine applications, DPSCs become one of the target adult stem cells which need to further understand and develop. Although some achievements have been made in the study of DPSC, several challenges remain to be solved. For example, as the main problem in all kinds of stem cells transplantation, low survival rates, especially low long-time survival rates, were still a key concern for whether the recover function really comes from DPSCs’ tissue function rebuild or secretion effect [44, 55]. Multifield cooperation is urgently needed to dig into the mechanism as well as the technic related to DPSC differentiation and artificial tissue construction. More importantly, as most of the studies conducted on animal models, more clinic-related experiments are necessary to evaluate the efficacy of the procedures in regenerating defects in human.

Abbreviations

BMSCs:

Bone marrow stem cells

CCs:

Costal chondrocytes

DMP-1:

Dentin matrix protein 1

DMSO:

Dimethyl sulfoxide

DPSCs:

Dental pulp stem cells

DSPP:

Dentin sialophosphoprotein

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony-stimulating factor

hDPSCs:

Human dental pulp stem cells

IDPSCs:

Immature dental pulp stem cells

PL:

Platelet lysates

SC:

Stem cell

SCI:

Spinal cord injury

SDF1:

Stromal cell-derived factor 1

SHEDs:

Stem cells from human exfoliated deciduous

References

  1. 1.

    Apel C, Buttler P, Salber J, Dhanasingh A, Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. Biomed Tech. 2018;63:261–9.

    CAS  Article  Google Scholar 

  2. 2.

    d’Aquino R, Papaccio G, Laino G, Graziano A. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev. 2008;4:21–6.

    PubMed  Article  Google Scholar 

  3. 3.

    d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.

    PubMed  Article  Google Scholar 

  4. 4.

    Asutay F, Acar HA, Yolcu U, Kırtay M, Alan H. Dental stem cell sources and their potentials for bone tissue engineering. Istanbul Univ Dishekim Fak Derg. 2015;49:51–6.

    Article  Google Scholar 

  5. 5.

    Bray AF, Cevallos RR, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience. 2014;280:142–55.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D’Aquino R, Graziano A, Lanza V, Scapoli L, Martinelli M, et al. Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Surg. 2008;19:616–25 discussion 626–627.

    PubMed  Article  Google Scholar 

  7. 7.

    Catón J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med. 2011;15:1054–65.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Chuang T-H, Wilson RE, Love JM, Fisher JP, Shah SB. A novel internal fixator device for peripheral nerve regeneration. Tissue Eng. Part C Methods. 2013;19:427–37.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Dai J, et al. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials. 2012;33(31):7699–711.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Daltoé FP, Mendonça PP, Mantesso A, Deboni MCZ. Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies. Braz Oral Res. 2014;28:1–7.

    Article  Google Scholar 

  11. 11.

    Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab. 2015;33:371–82.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EHY. Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod. 2012;38:454–63.

    PubMed  Article  Google Scholar 

  13. 13.

    Dunaway K, Goorha S, Matelski L, Urraca N, Lein PJ, Korf I, Reiter LT, LaSalle JM. Dental pulp stem cells model early life and imprinted DNA methylation patterns. Stem Cells. 2017;35:981–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ebrahimi Dastgurdi M, Ejeian F, Nematollahi M, Motaghi A, Nasr-Esfahani MH. Comparison of two digestion strategies on characteristics and differentiation potential of human dental pulp stem cells. Arch Oral Biol. 2018;93:74–9.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Fahimipour F, Dashtimoghadam E, Rasoulianboroujeni M, Yazdimamaghani M, Khoshroo K, Tahriri M, Yadegari A, Gonzalez JA, Vashaee D, Lobner DC, et al. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dent Mater. 2018;34:209–20.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ferrúa CP, Centeno EGZ, Rosa LC, da Amaral CC, do Severo RF, Sarkis-Onofre R, Nascimento GG, Cordenonzi G, Bast RK, Demarco FF, et al. How has dental pulp stem cells isolation been conducted? A scoping review. Braz Oral Res. 2017;31:e87.

    PubMed  Article  Google Scholar 

  17. 17.

    Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. In: Kioussi C, editor. Stem cells and tissue repair. Methods in molecular biology (methods and protocols), vol 1210. New York: Humana press; 2014.

    Google Scholar 

  18. 18.

    Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d’Aquino R, Tirino V, et al. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med. 2013;2:316–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13–27.

    PubMed  Article  Google Scholar 

  20. 20.

    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis C, Lambrichts I, Bronckaers A. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res. 2013;353:65–78.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:1–14.

    Article  Google Scholar 

  24. 24.

    Huang GT-J, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod. 2006;32:1066–73.

    PubMed  Article  Google Scholar 

  25. 25.

    Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Huang GT-J, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16:605–15.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M. Complete pulp regeneration after pulpectomy by transplantation of CD105 stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17:1911–20.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Utunomiya S, Nakamura H, Matsushita K, Nakashima M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med. 2013;2:521–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ishkitiev N, Yaegaki K, Calenic B, Nakahara T, Ishikawa H, Mitiev V, Haapasalo M. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod. 2010;36:469–74.

    PubMed  Article  Google Scholar 

  30. 30.

    Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H, Mitev V, Haapasalo M. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod. 2012;38:475–80.

    PubMed  Article  Google Scholar 

  31. 31.

    Itoh Y, Sasaki JI, Hashimoto M, Katata C, Hayashi M, Imazato S. Pulp regeneration by 3-dimensional dental pulp stem cell constructs. J Dent Res. 2018;97(10):1137–43.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Janebodin K, Horst OV, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011;6:e27526.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Jo Y-Y, Lee H-J, Kook S-Y, Choung H-W, Park J-Y, Chung J-H, Choung Y-H, Kim E-S, Yang H-C, Choung P-H. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184:105–16.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kim S-H, Kim Y-S, Lee S-Y, Kim K-H, Lee Y-M, Kim W-K, Lee Y-K. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. J Periodontal Implant Sci. 2011;41:192–200.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G. Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int. 2011;59:371–81.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Kumar A, Bhattacharyya S, Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank. 2015;16:513–22.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Mol Neurobiol. 2017;54:4672–82.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005;20:1394–402.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G. An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol. 2006;206:693–701.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Lee S-Y, Huang G-W, Shiung J-N, Huang Y-H, Jeng J-H, Kuo T-F, Yang J-C, Yang W-CV. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs. 2012;196:23–33.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Lei M, Li K, Li B, Gao L-N, Chen F-M, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014;35:6332–43.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, Field J, Hamilton-Bruce MA, Warming S, Manavis J, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1:177–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117:4376–421.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004;10:73–80.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lindemann D, Werle SB, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L. Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol. 2014;59:970–6.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Liu M, Zhao L, Hu J, Wang L, Li N, Wu D, Shi X, Yuan M, Hu W, Wang X. Endothelial cells and endothelin-1 promote the odontogenic differentiation of dental pulp stem cells. Mol Med Rep. 2018;18:893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Marrazzo P, Paduano F, Palmieri F, Marrelli M, Tatullo M. Highly efficient reparative behaviour of dental pulp stem cells cultured with standardised platelet lysate supplementation. Stem Cells Int. 2016;2016:7230987.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J. 2014;28:1634–43.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M, Leadbeater W, Scheven BA. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy. 2016;18:487–96.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Morad G, Kheiri L, Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature. Arch Oral Biol. 2013;58:1818–27.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31:711–8.

    PubMed  Article  Google Scholar 

  55. 55.

    Nakashima M, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Navabazam AR, et al. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Iran J Reprod Med. 2013;11(3):235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Nemeth CL, et al. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng A. 2014;20(21–22):2817–29.

    CAS  Article  Google Scholar 

  58. 58.

    Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–23.

    CAS  Article  Google Scholar 

  59. 59.

    Paino F, La Noce M, Giuliani A, De Rosa A, Mazzoni S, Laino L, Amler E, Papaccio G, Desiderio V, Tirino V. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci. 2017;131:699–713.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur. Cell Mater. 2010;20:295–305.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208:319–25.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80:836–42.

    PubMed  Article  Google Scholar 

  63. 63.

    Pisciotta A, Bertoni L, Riccio M, Mapelli J, Bigiani A, La Noce M, Orciani M, de Pol A, Carnevale G. Use of a 3D floating sphere culture system to maintain the neural crest-related properties of human dental pulp stem cells. Front Physiol. 2018;9:547.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell. 2007;1:35–8.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122:80–90.

    CAS  PubMed  Google Scholar 

  66. 66.

    Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–9.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18:696–704.

    PubMed  Article  Google Scholar 

  68. 68.

    Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–9.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Sivaram GD, Sivaram G, Department of Periodontics, Ragas Dental College/Dr. M. G. R. University, India, Shri Nandhini Devi R. Stem cells in periodontal regeneration. IOSR J Dent Med Sci. 2014;13:31–40.

    Article  Google Scholar 

  70. 70.

    Takebe Y, Tatehara S, Fukushima T, Tokuyama-Toda R, Yasuhara R, Mishima K, Satomura K. Cryopreservation method for the effective collection of dental pulp stem cells. Tissue Eng. Part C Methods. 2017;23:251–61.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology. 2013;101:121–32.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Vasandan AB, et al. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med. 2014;18(2):344–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Verdugo F, Sáez-Rosón A, Uribarri A, Martínez-Conde R, Cabezas-Olcoz J, Moragues MD, Pontón J. Bone microbial decontamination agents in osseous grafting: an in vitro study with fresh human explants. J Periodontol. 2011;82:863–71.

    PubMed  Article  Google Scholar 

  74. 74.

    Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010;19:1375–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Wang J, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly (L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater. 2010;6(10):3856–63.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Werle SB, et al. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig. 2015;20:75–81.

    PubMed  Article  Google Scholar 

  77. 77.

    Wei X, et al. Expression of mineralization markers in dental pulp cells. J Endod. 2007;33(6):703–8.

    PubMed  Article  Google Scholar 

  78. 78.

    Wang X, Luo Y, Yang Y, Zheng B, Yan F, Wei F, Friis T, Crawford RW, Xiao Y. Alteration of blood clot structure by bone substitute biomaterials (beta-tricalcium phosphate) significantly delays bone healing process. J Mater Chem B Mater Biol Med. 2018. https://pubs.rsc.org/en/content/articlelanding/2018/tb/c8tb01747f#!divAbstract.

  79. 79.

    Wilson R, Urraca N, Skobowiat C, Hope KA, Miravalle L, Chamberlin R, Donaldson M, Seagroves TN, Reiter LT. Assessment of the tumorigenic potential of spontaneously immortalized and hTERT-immortalized cultured dental pulp stem cells. Stem Cells Transl Med. 2015;4:905–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Wu G, Deng Z-H, Fan X-J, Ma Z-F, Sun Y-J, Ma D-D, Wu J-J, Shi J-N, Jin Y. Odontogenic potential of mesenchymal cells from hair follicle dermal papilla. Stem Cells Dev. 2009;18:583–9.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Xiao J, Yang D, Li Q, Tian W, Guo W. The establishment of a chemically defined serum-free culture system for human dental pulp stem cells. Stem Cell Res Ther. 2018;9:191.

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Xing J, Lian M, Shen Q, Feng G, Huang D, Lu X, Gu Z, Li L, Zhang J, Huang S, et al. AGS3 is involved in TNF-α medicated osteogenic differentiation of human dental pulp stem cells. Differentiation. 2015;89:128–36.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Xue C, Xie J, Zhao D, Lin S, Zhou T, Shi S, Shao X, Lin Y, Zhu B, Cai X. The JAK/STAT3 signalling pathway regulated angiogenesis in an endothelial cell/adipose-derived stromal cell co-culture, 3D gel model. Cell Prolif. 2016;50:e12307.

    Article  CAS  Google Scholar 

  84. 84.

    Yildirim S, Yapar M, Sermet U, Sener K, Kubar A. The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:113–20.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007;99:465–74.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Zhang C, Zhang Y, Feng Z, Zhang F, Liu Z, Sun X, Ruan M, Liu M, Jin S. Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivity-induced esophageal injury. Cell Death Dis. 2018;9:738.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Zhang W, et al. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 2006;12(10):2813–23.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Zhong J, Guo B, Xie J, Deng S, Fu N, Lin S, Li G, Lin Y, Cai X. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Res. 2016;4:15036.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Zhou M, Liu N-X, Shi S-R, Li Y, Zhang Q, Ma Q-Q, Tian T-R, Ma W-J, Cai X-X, Lin Y-F. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine. 2018;14:1227–36.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was funded by the Ministry of Science and Technology of China (National Science and Technology Major Project, Grant No. 2018YFA0109100) and the National Natural Science Foundation of China (Grants 31871496 and 31741090).

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author information

Affiliations

Authors

Contributions

XY and LL contributed equally to this study. XY and LL organized the figures and wrote the paper. DZ and LX designed the topic and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Xiao or Donghui Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, L., Xiao, L. et al. Recycle the dental fairy’s package: overview of dental pulp stem cells. Stem Cell Res Ther 9, 347 (2018). https://doi.org/10.1186/s13287-018-1094-8

Download citation