Robinson NE. International workshop on equine chronic airway disease. Michigan State University 16–18 June 2000. Equine Vet J. 2001;33(1):5–19.
Article
CAS
PubMed
Google Scholar
Lavoie JP. Recurrent airway obstruction (heaves) and summer-pasture-associated obstructive pulmonary disease. In: McGorum BC, Dixon PM, Robinson NE, Schumacher J, editors: Equine Respiratory Medicine and Surgery. Saunders Elsevier; Amsterdam 2007. p. 565–589.
Aviza G, Ainsworth D, Eicker S, Santiago M, Divers T, Perkins G. Outcome of horses diagnosed with and treated for heaves (recurrent airway obstruction). Equine Vet Educ. 2001;13:243–6.
Article
Google Scholar
Leclere M, Lavoie-Lamoureux A, Lavoie JP. Heaves, an asthma-like disease of horses. Respirology. 2011;16(7):1027–46.
Article
PubMed
Google Scholar
Couëtil LL, Cardwell JM, Leguillette R, Mazan M, Richard E, Bienzle D, et al. Equine asthma: current understanding and future directions. Front Vet Sci. 2020;7:450.
Article
PubMed
PubMed Central
Google Scholar
Custovic A, Johnston SL, Pavord I, Gaga M, Fabbri L, Bel EH, et al. EAACI position statement on asthma exacerbations and severe asthma. Allergy. 2013;68(12):1520–31.
Article
CAS
PubMed
Google Scholar
Corcoran BM, Foster DJ, Fuentes VL. Feline asthma syndrome: a retrospective study of the clinical presentation in 29 cats. J Small Anim Pract. 1995;36(11):481–8.
Article
CAS
PubMed
Google Scholar
Trzil JE. Feline asthma: Diagnostic and treatment update. Vet Clin North Am Small Anim Pract. 2020;50(2):375–91.
Article
PubMed
Google Scholar
Couëtil LL, Cardwell JM, Gerber V, Lavoie JP, Léguillette R, Richard EA. Inflammatory airway disease of horses—revised consensus statement. J Vet Intern Med. 2016;30(2):503–15.
Article
PubMed
PubMed Central
Google Scholar
Leclere M, Lavoie-Lamoureux A, Joubert P, Relave F, Setlakwe EL, Beauchamp G, et al. Corticosteroids and antigen avoidance decrease airway smooth muscle mass in an equine asthma model. Am J Respir Cell Mol Biol. 2012;47(5):589–96.
Article
CAS
PubMed
Google Scholar
Bullone M, Vargas A, Elce Y, Martin JG, Lavoie JP. Fluticasone/salmeterol reduces remodelling and neutrophilic inflammation in severe equine asthma. Sci Rep. 2017;7:8843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cuming RS, Groover ES, Wooldridge AA, Caldwell FJ. Review of glucocorticoid therapy in horses. Part 1: pharmacology. Equine Vet Educ. 2018;30(3):141–50.
Article
Google Scholar
Eyre P, Elmes P, Stickland S. Corticosteroid-potentiated vascular responses of the equine digit: a possible pharmacologic basis for laminitis. Am J Vet Res. 1979;40(1):135–8.
CAS
PubMed
Google Scholar
Cohen N, Carter G. Steroid hepatopathy in a horse with glucocorticoid-induced hyperadrenocorticism. J Am Vet Med Assoc. 1992;200(11):1682–4.
CAS
PubMed
Google Scholar
Mair TS. Bacterial pneumonia associated with corticosteroid therapy in three horses. Vet Rec. 1996;138(9):205–7.
Article
CAS
PubMed
Google Scholar
Pereira MM, Groover E, Wooldridge A, Caldwell F. Review of glucocorticoid therapy in horses. Part 2: clinical use of systemic glucocorticoids in horses. Equine Vet Educ. 2018;30(4):213–24.
Article
Google Scholar
Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med. 2009;13(11–12):4385–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voga M, Adamic N, Vengust M, Majdic G. Stem cells in veterinary medicine—current state and treatment options. Front Vet Sci. 2020;7:278.
Article
PubMed
PubMed Central
Google Scholar
Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development. 1997;124(10):1929–39.
Article
CAS
PubMed
Google Scholar
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784.
Article
CAS
PubMed Central
Google Scholar
Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases. J Clin Med. 2018;7(10):255.
Article
CAS
Google Scholar
Harrell CR, Sadikot R, Pascual J, Fellabaum C, Jankovic MG, Jovicic N, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem Cells Int. 2019;2019:4236973.
PubMed
PubMed Central
Google Scholar
Zhang LB, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: a systematic review and meta-analysis. Pulm Pharmacol Ther. 2019;54:39–52.
Article
PubMed
CAS
Google Scholar
Yen BL, Yen M, Wang L, Liu K, Sytwu H. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl Med. 2020;9(10):1163–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L760–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Jang AS, Kwon JH, Park SK, Won JH, Park CS. Mesenchymal stem cell transfer suppresses airway remodeling in a toluene diisocyanate-induced murine asthma model. Allergy Asthma Immunol Res. 2011;3(3):205–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho KS, Park MK, Kang SA, Park HY, Hong SL, Park HK, et al. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm. 2014;2014:436476.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mariñas-Pardo L, Mirones I, Amor-Carro O, Fraga-Iriso R, Lema-Costa B, Cubillo I, et al. Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy. 2014;69(6):730–40.
Article
PubMed
CAS
Google Scholar
Abreu SC, Antunes MA, Xisto DG, Cruz FF, Branco VC, Bandeira E, et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Transl Med. 2017;6(6):1557–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Y, Ran Y, Lu B, Li J, Zhang J, Feng C, et al. Therapeutic effects of human umbilical cord-derived mesenchymal stem cells on canine radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2018;102(2):407–16.
Article
PubMed
Google Scholar
Trzil JE, Masseau I, Webb TL, Chang C-H, Dodam JR, Liu H, et al. Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: a pilot study. J Feline Med Surg. 2016;18(12):981–90.
Article
PubMed
Google Scholar
Ihara K, Fukuda S, Enkhtaivan B, Trujillo R, Perez-Bello D, Nelson C, et al. Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation. PloS ONE. 2017;12(10):e0185937.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cardenes N, Aranda-Valderrama P, Carney JP, Sellares Torres J, Alvarez D, Kocydirim E, et al. Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respir Res. 2019;6(1):e000308.
Article
PubMed
PubMed Central
Google Scholar
Barussi FCM, Bastos FZ, Leite LMB, Fragoso FYI, Senegaglia AC, Brofman PRS, et al. Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction. Respir Physiol Neurobiol. 2016;232:35–42.
Article
CAS
PubMed
Google Scholar
Murcia RY, Vargas A, Lavoie J-P. The interleukin-17 induced activation and increased survival of equine neutrophils is insensitive to glucocorticoids. PLoS ONE. 2016;11(5):e0154755.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cornelisse CJ, Robinson NE, Berney CEA, Kobe CA, Boruta DT, Derksen FJ. Efficacy of oral and intravenous dexamethasone in horses with recurrent airway obstruction. Equine Vet J. 2004;36(5):426–30.
Article
CAS
PubMed
Google Scholar
DeLuca L, Erb HN, Young JC, Perkins GA, Ainsworth DM. The effect of adding oral dexamethasone to feed alterations on the airway cell inflammatory gene expression in stabled horses affected with recurrent airway obstruction. J Vet Intern Med. 2008;22(2):427–35.
Article
CAS
PubMed
Google Scholar
Ainsworth DM, Cheetham J. Disorders of the respiratory system. In: Reed S, Bayly W, Sellon D, editors. Equine internal medicine. 3rd ed. New York: Elsevier Saunders; 2010. p. 290–371.
Google Scholar
Beeler-Marfisi J, Clark ME, Wen X, Sears W, Huber L, Ackerley C, et al. Experimental induction of recurrent airway obstruction with inhaled fungal spores, lipopolysaccharide, and silica microspheres in horses. Am J Vet Res. 2010;71(6):682–9.
Article
PubMed
Google Scholar
Willoughby RA, McDonell WN. Pulmonary function testing in horses. Vet Clin North Am Large Anim Pract. 1979;1(1):171–96.
Article
CAS
PubMed
Google Scholar
Klein HJ, Deegen E. The measurement of interpleural pressure - a method to assess lung mechanics in the horse. 1987;4(3):141–7
Hoffman AM. Clinical application of pulmonary function testing in horses. In: Lekeux P, editor. Equine respiratory diseases. 2002. https://www.ivis.org/library/equine-respiratory-diseases/clinical-application-of-pulmonary-function-testing-horses. Accessed 14 Feb 2021.
Couëtil LL, Hammer J, Feutz MM, Nogradi N, Perez-Moreno C, Ivester K. Effects of N-butylscopolammonium bromide on lung function in horses with recurrent airway obstruction. J Vet Intern Med. 2012;26(6):1433–8.
Article
PubMed
Google Scholar
Hoffman AM. Bronchoalveolar lavage: sampling technique and guidelines for cytologic preparation and interpretation. Vet Clin North Am Equine Pract. 2008;24(2):423–35.
Article
PubMed
Google Scholar
Beekman L, Tohver T, Dardari R, Léguillette R. Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. BMC Mol Biol. 2011;12(1):5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giguère S, Prescott JF. Quantitation of equine cytokine mRNA expression by reverse transcription-competitive polymerase chain reaction. Vet Immunol Immunopathol. 1999;67(1):1–15.
Article
PubMed
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forlenza M, Kaiser T, Savelkoul HFJ, Wiegertjes GF. The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. In: De Ley M, editor. Cytokine protocols; methods in molecular biology, vol. 820. Berlin: Springer; 2012. p. 7–23.
Chapter
Google Scholar
Picandet V, Léguillette R, Lavoie JP. Comparison of efficacy and tolerability of isoflupredone and dexamethasone in the treatment of horses affected with recurrent airway obstruction ('heaves’). Equine Vet J. 2003;35(4):419–24.
Article
CAS
PubMed
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–144. 2020. Available from: https://CRAN.R-project.org/package=nlme. Accessed 5 Nov 2020
Henningsen A. censReg: Censored Regression (Tobit) Models. R package version 0.5–32. 2020. Available from: https://cran.r-project.org/web/packages/censReg/censReg.pdf. Accessed 5 Nov 2020
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Google Scholar
R Core Team. R version 3.6.3. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available from: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006. Accessed 5 Nov 2020
Therneau T. A package for survival analysis in S. version 2.38. 2015. Available from: https://mran.microsoft.com/snapshot/2017-02-04/web/packages/survival/citation.html. Accessed 5 Nov 2020
Russell KA, Chow NHC, Dukoff D, Gibson TWG, LaMarre J, Betts DH, et al. Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS ONE. 2016;11(12):e0167442.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther. 2017;8(1):218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, et al. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS ONE. 2018;13(8):e020922.
Article
CAS
Google Scholar
Tang GN, Li CL, Yao Y, Xu ZB, Deng MX, Wang SY, et al. MicroRNAs involved in asthma after mesenchymal stem cells treatment. Stem Cells Dev. 2016;25(12):883–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 2018;363(1):114–20.
Article
CAS
PubMed
Google Scholar
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.
Article
CAS
PubMed
Google Scholar
Holcombe SJ, Jackson C, Gerber V, Jefcoat A, Berney C, Eberhardt S, et al. Stabling is associated with airway inflammation in young Arabian horses. Equine Vet J. 2010;33(3):244–9.
Article
Google Scholar
Robinson NE. Recurrent airway obstruction (Heaves). In: Lekeux P, editor: Equine Respiratory Diseases; IVIS; 2001. Available from: http://www.ivis.org/special_books/Lekeux/robinson/reference.asp. Accessed 17 Mar 2000
Giguère S, Viel L, Lee E, MacKay RJ, Hernandez J, Franchini M. Cytokine induction in pulmonary airways of horses with heaves and effect of therapy with inhaled fluticasone propionate. Vet Immunol Immunopathol. 2002;85(3):147–58.
Article
PubMed
Google Scholar
Ainsworth DM, Grünig G, Matychak MB, Young J, Wagner B, Erb HN, et al. Recurrent airway obstruction (RAO) in horses is characterized by IFN-γ and IL-8 production in bronchoalveolar lavage cells. Vet Immunol Immunopathol. 2003;96(1):83–91.
Article
CAS
PubMed
Google Scholar
Debrue M, Hamilton E, Joubert P, Lajoie-Kadoch S, Lavoie JP. Chronic exacerbation of equine heaves is associated with an increased expression of interleukin-17 mRNA in bronchoalveolar lavage cells. Vet Immunol Immunopathol. 2005;105(1):25–31.
Article
CAS
PubMed
Google Scholar
Padoan E, Ferraresso S, Pegolo S, Castagnaro M, Barnini C, Bargelloni L. Real time RT-PCR analysis of inflammatory mediator expression in recurrent airway obstruction-affected horses. Vet Immunol Immunopathol. 2013;156(3):190–9.
Article
CAS
PubMed
Google Scholar
Bullone M, Murcia RY, Lavoie J-P. Environmental heat and airborne pollen concentration are associated with increased asthma severity in horses. Equine Vet J. 2016;48(4):479–84.
Article
CAS
PubMed
Google Scholar
Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270(5234):286–90.
Article
CAS
PubMed
Google Scholar
Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol. 1997;29(6):867–70.
Article
CAS
PubMed
Google Scholar
van der Velden VH. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm. 1998;7(4):229–37.
Article
PubMed
PubMed Central
Google Scholar
Zamorano J, Rivas MD, Pérez-G M. Interleukin-4: a multifunctional cytokine. Inmunologia. 2003;22(2):215–24.
Google Scholar
Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells Dayt Ohio. 2018;36(4):602–15.
Article
CAS
Google Scholar
Horohov DW, Beadle RE, Mouch S, Pourciau SS. Temporal regulation of cytokine mRNA expression in equine recurrent airway obstruction. Vet Immunol Immunopathol. 2005;108(1–2):237–45.
Article
CAS
PubMed
Google Scholar
Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bond SL, Hundt J, Léguillette R. Effect of injected dexamethasone on relative cytokine mRNA expression in bronchoalveolar lavage fluid in horses with mild asthma. BMC Vet Res. 2019;15(1):397.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: From discovery to targeting. Trends Mol Med. 2016;22(3):230–41.
Article
CAS
PubMed
Google Scholar
Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129(3):311–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan D, Ansar AS. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet. 2015;6:236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park J, Jeong S, Park K, Yang K, Shin S. Expression profile of microRNAs following bone marrow-derived mesenchymal stem cell treatment in lipopolysaccharide-induced acute lung injury. Exp Ther Med. 2018;15(6):5495–502.
PubMed
PubMed Central
Google Scholar
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2015;69(1):142–59.
Article
Google Scholar
Alangari AA. Genomic and non-genomic actions of glucocorticoids in asthma. Ann Thorac Med. 2010;5(3):133–9.
Article
PubMed
PubMed Central
Google Scholar
Knudsen PJ, Dinarello CA, Strom TB. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. J Immunol. 1986;137(10):3189–94.
CAS
PubMed
Google Scholar
Schindler R, Clark BD, Dinarello CA. Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem. 1990;265(18):10232–7.
Article
CAS
PubMed
Google Scholar
Dokter WH, Esselink MT, Sierdsema SJ, Halie MR, Vellenga E. Transcriptional and posttranscriptional regulation of the interleukin-4 and interleukin-3 genes in human T cells. Blood. 1993;81(1):35–40.
Article
CAS
PubMed
Google Scholar
Wong CK, Ho CY, Ko FWS, Chan CHS, Ho ASS, Hui DSC, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-γ, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol. 2001;125(2):177–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fallon PG, Jolin HE, Smith P, Emson CL, Townsend MJ, Fallon R, et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity. 2002;17(1):7–17.
Article
CAS
PubMed
Google Scholar
Umland SP, Razac S, Shah H, Kyle Nahrebne D, Egan RW, Motasim BM. Interleukin-5 mRNA stability in human T cells is regulated differently than interleukin-2, interleukin-3, interleukin-4, granulocyte/macrophage colony-stimulating factor, and interferon- γ. Am J Respir Cell Mol Biol. 1998;18(5):631–42.
Article
CAS
PubMed
Google Scholar
Yarovinsky TO, Butler NS, Monick MM, Hunninghake GW. Early exposure to IL-4 stabilizes IL-4 mRNA in CD4 + T cells via RNA-binding protein HuR. J Immunol. 2006;177(7):4426–35.
Article
CAS
PubMed
Google Scholar
Popescu FD, Popescu F. A review of antisense therapeutic interventions for molecular biological targets in asthma. Biol Targets Ther. 2007;1(3):271–83.
CAS
Google Scholar
Ferraiolo BL, Moore JA, Crase D, Gribling P, Wilking H, Baughman RA. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-alpha in mice. Drug Metab Dispos Biol Fate Chem. 1988;16(2):270–5.
CAS
PubMed
Google Scholar
Simó R, Barbosa-Desongles A, Lecube A, Hernandez C, Selva DM. Potential role of tumor necrosis factor-α in downregulating sex hormone–binding globulin. Diabetes. 2012;61(2):372–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mahmoud L, Al-Enezi F, Al-Saif M, Warsy A, Khabar KS, Hitti EG. Sustained stabilization of interleukin-8 mRNA in human macrophages. RNA Biol. 2014;11(2):124–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montgomery JB, Husulak ML, Kosolofski H, Dos Santos S, Burgess H, Meachem MD. Tumor necrosis factor-alpha protein concentrations in bronchoalveolar lavage fluid from healthy horses and horses with severe equine asthma. Vet Immunol Immunopathol. 2018;202:70–3.
Article
CAS
PubMed
Google Scholar
Clark A. Post-transcriptional regulation of pro-inflammatory gene expression. Arthritis Res Ther. 2000;2(3):172.
Article
CAS
Google Scholar
Mijatovic T, Houzet L, Defrance P, Droogmans L, Huez G, Kruys V. Tumor necrosis factor-α mRNA remains unstable and hypoadenylated upon stimulation of macrophages by lipopolysaccharides. Eur J Biochem. 2000;267(19):6004–12.
Article
CAS
PubMed
Google Scholar
Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583(24):3966–73.
Article
CAS
PubMed
Google Scholar
Shebl FM, Pinto LA, García-Piñeres A, Lempicki R, Williams M, Harro C, et al. Comparison of mRNA and protein measures of cytokines following vaccination with HPV-16 L1 virus like particles. Cancer Epidemiol Biomark Prev. 2010;19(4):978–81.
Article
CAS
Google Scholar
Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep. 2015;5(1):10775.
Article
PubMed
PubMed Central
Google Scholar
Franchini M, Gill U, von Fellenberg R, Bracher VD. Interleukin-8 concentration and neutrophil chemotactic activity in bronchoalveolar lavage fluid of horses with chronic obstructive pulmonary disease following exposure to hay. Am J Vet Res. 2000;61(11):1369–74.
Article
CAS
PubMed
Google Scholar
Hansen S, Otten ND, Birch K, Skovgaard K, Hopster-Iversen C, Fjeldborg J. Bronchoalveolar lavage fluid cytokine, cytology and IgE allergen in horses with equine asthma. Vet Immunol Immunopathol. 2020;220:109976.
Article
CAS
PubMed
Google Scholar
Villarete LH, Remick DG. Transcriptional and post-transcriptional regulation of interleukin-8. Am J Pathol. 1996;149(5):1685–93.
CAS
PubMed
PubMed Central
Google Scholar
Orlikowsky TW, Neunhoeffer F, Goelz R, Eichner M, Henkel C, Zwirner M, et al. Evaluation of IL-8-concentrations in plasma and lysed EDTA-blood in healthy neonates and those with suspected early onset bacterial infection. Pediatr Res. 2004;56(5):804–9.
Article
CAS
PubMed
Google Scholar
Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101.
Article
CAS
PubMed
Google Scholar
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619.
Article
CAS
PubMed
Google Scholar
Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J. 2015;46(5):1350–60.
Article
CAS
PubMed
Google Scholar
Simpson LJ, Patel S, Bhakta NR, Choy DF, Brightbill HD, Ren X, et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol. 2014;15(12):1162–70.
Article
CAS
PubMed
PubMed Central
Google Scholar