Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in men: a review of an underestimated bone condition. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22042105.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Zhang X, Liang W, Chen G, Ma Y, Zhou Y, et al. Efficacy of adjuvant treatment for fracture nonunion/delayed union: a network meta-analysis of randomized controlled trials. Res Square; 2022.
Rodríguez-Merchán EC. Bone healing materials in the treatment of recalcitrant nonunions and bone defects. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23063352.
Article
PubMed
PubMed Central
Google Scholar
Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52:S18–22.
Article
PubMed
Google Scholar
Alonzo M, Alvarez Primo F, Anil Kumar S, Mudloff JA, Dominguez E, Fregoso G, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng. 2021;17: 100248.
Article
CAS
PubMed
Google Scholar
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, et al. Translational insights into stem cell preconditioning: from molecular mechanisms to preclinical applications. Biomed Pharmacother. 2021;142: 112026.
Article
CAS
PubMed
Google Scholar
Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther. 2021;16:63–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol. 2021;474:48–61.
Article
CAS
PubMed
Google Scholar
Fu R, Liu C, Yan Y, Li Q, Huang R-L. Bone defect reconstruction via endochondral ossification: a developmental engineering strategy. J Tissue Eng. 2021;12:20417314211004212.
Article
PubMed
PubMed Central
Google Scholar
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.
Article
CAS
PubMed
Google Scholar
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn. 2021;250(3):377–92.
Article
PubMed
Google Scholar
Lo KWH, Ulery BD, Kan HM, Ashe KM, Laurencin CT. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med. 2014;8(9):728–36.
Article
CAS
PubMed
Google Scholar
Fan J, Im CS, Cui Z-K, Guo M, Bezouglaia O, Fartash A, et al. Delivery of phenamil enhances BMP-2-induced osteogenic differentiation of adipose-derived stem cells and bone formation in calvarial defects. Tissue Eng Part A. 2015;21(13–14):2053–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Im CS, Guo M, Cui Z-K, Fartash A, Kim S, et al. Enhanced osteogenesis of adipose-derived stem cells by regulating bone morphogenetic protein signaling antagonists and agonists. Stem Cells Transl Med. 2016;5(4):539–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rezia Rad M, Khojaste M, Hasan Shahriari M, Asgary S, Khojasteh A. Purmorphamine increased adhesion, proliferation and expression of osteoblast phenotype markers of human dental pulp stem cells cultured on beta-tricalcium phosphate. Biomed Pharmacother. 2016;82:432–8.
Article
CAS
PubMed
Google Scholar
Wu W, Ye Z, Zhou Y, Tan W-S. AICAR, a small chemical molecule, primes osteogenic differentiation of adult mesenchymal stem cells. Int J Artif Organs. 2011;34(12):1128–36.
Article
CAS
PubMed
Google Scholar
Safari B, Aghanejad A, Roshangar L, Davaran S. Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf, B. 2021;198: 111462.
Article
CAS
Google Scholar
James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica. 2013. https://doi.org/10.1155/2013/684736.
Article
PubMed
PubMed Central
Google Scholar
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and regeneration - What Do We Know So Far. Front Cell Dev Biol. 2018;6:170.
Article
PubMed
Google Scholar
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5(1):13–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, et al. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater. 2011;7(6):2740–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahnazari M, Yao W, Corr M, Lane NE. Targeting the Wnt signaling pathway to augment bone formation. Curr Osteoporos Rep. 2008;6(4):142–8.
Article
PubMed
PubMed Central
Google Scholar
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Lu Y, Mai Z, Liu R, Peng Z, Chen L, et al. Suppressing MicroRNA-30b by estrogen promotes osteogenesis in bone marrow mesenchymal stem cells. Stem Cells Int. 2019;2019:7547506.
Article
PubMed
PubMed Central
Google Scholar
Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, et al. Four and a half LIM domains protein 2 mediates bortezomib-induced osteogenic differentiation of mesenchymal stem cells in multiple myeloma through p53 signaling and β-catenin nuclear enrichment. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.729799.
Article
PubMed
PubMed Central
Google Scholar
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The cross-talks among bone morphogenetic protein (BMP) signaling and other prominent pathways involved in neural differentiation. Front Mol Neurosci. 2022;15:827275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6(8A):32–52.
Article
PubMed
PubMed Central
Google Scholar
Kang H, Shih Y-RV, Nakasaki M, Kabra H, Varghese S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci Adv. 2016;2(8):e1600691.
Article
PubMed
PubMed Central
Google Scholar
Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem. 2012;287(19):15718–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Alimonte I, Nargi E, Lannutti A, Marchisio M, Pierdomenico L, Costanzo G, et al. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res. 2013;11(1):611–24.
Article
CAS
PubMed
Google Scholar
Rao V, Shih Y-RV, Kang H, Kabra H, Varghese S. Adenosine signaling mediates osteogenic differentiation of human embryonic stem cells on mineralized matrices. Front Bioeng Biotechnol. 2015. https://doi.org/10.3389/fbioe.2015.00185.
Article
PubMed
PubMed Central
Google Scholar
Eisenstein A, Chitalia SV, Ravid K. Bone marrow and adipose tissue adenosine receptors effect on osteogenesis and adipogenesis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207470.
Article
PubMed
PubMed Central
Google Scholar
Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signal. 2016;12(4):583–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez CD, Bekisz JM, Corciulo C, Mediero A, Coelho PG, Witek L, et al. Local delivery of adenosine receptor agonists to promote bone regeneration and defect healing. Adv Drug Deliv Rev. 2019;146:240–7.
Article
CAS
PubMed
Google Scholar
Tong X, Ganta RR, Liu Z. AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs. Biol Cell. 2020;112(9):251–64.
Article
CAS
PubMed
Google Scholar
Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, et al. TGF-β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep. 2019;19(5):3505–18.
CAS
PubMed
PubMed Central
Google Scholar
Lv W-T, Du D-H, Gao R-J, Yu C-W, Jia Y, Jia Z-F, et al. Regulation of hedgehog signaling offers a novel perspective for bone homeostasis disorder treatment. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20163981.
Article
PubMed
PubMed Central
Google Scholar
Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35(6):1641–50.
Article
CAS
PubMed
Google Scholar
McGrath EE. OPG/RANKL/RANK pathway as a therapeutic target in cancer. J Thorac Oncol. 2011;6(9):1468–73.
Article
PubMed
Google Scholar
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban EM. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther. 2020;11(1):456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Pan J, Chen S-D. Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson’s disease. Prog Neurobiol. 2012;98(2):207–21.
Article
CAS
PubMed
Google Scholar
Ba P, Duan X, Fu G, Lv S, Yang P, Sun Q. Differential effects of p38 and Erk1/2 on the chondrogenic and osteogenic differentiation of dental pulp stem cells. Mol Med Rep. 2017;16(1):63–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuo S-W, Rimando MG, Liu Y-S, Lee OK. Intermittent administration of parathyroid hormone 1–34 enhances osteogenesis of human mesenchymal stem cells by regulating protein kinase Cδ. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102221.
Article
PubMed
PubMed Central
Google Scholar
He S, Choi YH, Choi J-K, Yeo C-Y, Chun C, Lee KY. Protein kinase A regulates the osteogenic activity of Osterix. J Cell Biochem. 2014;115(10):1808–15.
Article
CAS
PubMed
Google Scholar
Chava S, Chennakesavulu S, Gayatri BM, Reddy ABM. A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis. 2018;9(7):1–16.
Article
CAS
Google Scholar
Dong P, Gu X, Zhu G, Li M, Ma B, Zi Y. Melatonin induces osteoblastic differentiation of mesenchymal stem cells and promotes fracture healing in a rat model of femoral fracture via neuropeptide Y/neuropeptide Y receptor Y1 signaling. Pharmacology. 2018;102(5–6):272–80.
Article
CAS
PubMed
Google Scholar
Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, et al. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS ONE. 2013;8(12): e82436.
Article
PubMed
PubMed Central
Google Scholar
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020:6910312.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Long F. mTORC1 signaling promotes osteoblast differentiation from preosteoblasts. PLoS ONE. 2015;10(6): e0130627.
Article
PubMed
PubMed Central
Google Scholar
Gu X-C, Zhang X-B, Hu B, Zi Y, Li M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides. 2016;60:61–6.
Article
CAS
PubMed
Google Scholar
Liu S, Jin D, Wu JQ, Xu ZY, Fu S, Mei G, et al. Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides. 2016;56:105–13.
Article
CAS
PubMed
Google Scholar
Sebastian A-A, Kannan T-P, Norazmi M-N, Nurul A-A. Interleukin-17A promotes osteogenic differentiation by increasing OPG/RANKL ratio in stem cells from human exfoliated deciduous teeth (SHED). J Tissue Eng Regen Med. 2018;12(8):1856–66.
Article
CAS
PubMed
Google Scholar
Fitter S, Matthews MP, Martin SK, Xie J, Ooi SS, Walkley CR, et al. mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation. Mol Cell Biol. 2017. https://doi.org/10.1128/MCB.00668-16.
Article
PubMed
PubMed Central
Google Scholar
Chuang S-C, Chen C-H, Fu Y-C, Tai IC, Li C-J, Chang L-F, et al. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol. 2015;98(3):453–64.
Article
CAS
PubMed
Google Scholar
Matsumoto Y, Otsuka F, Takano-Narazaki M, Katsuyama T, Nakamura E, Tsukamoto N, et al. Estrogen facilitates osteoblast differentiation by upregulating bone morphogenetic protein-4 signaling. Steroids. 2013;78(5):513–20.
Article
CAS
PubMed
Google Scholar
Samiei M, Aghazadeh M, Alizadeh E, Aslaminabadi N, Davaran S, Shirazi S, et al. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Adv Pharm Bull. 2016;6(3):353–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res. 2010;25(11):2470–8.
Article
CAS
PubMed
Google Scholar
Niu J, Ding G, Zhang L. Effects of simvastatin on the osteogenic differentiation and immunomodulation of bone marrow mesenchymal stem cells. Mol Med Rep. 2015;12(6):8237–40.
Article
CAS
PubMed
Google Scholar
Zhang M, Bian YQ, Tao HM, Yang XF, Mu WD. Simvastatin induces osteogenic differentiation of MSCs via Wnt/β-catenin pathway to promote fracture healing. Eur Rev Med Pharmacol Sci. 2018;22(9):2896–905.
CAS
PubMed
Google Scholar
Zhang L, Zhang L, Tian F, Han D, Niu J, Liu X. Effect of simvastatin on mRNA expressions of some components of Wnt signaling pathway in differentiation process of osteoblasts derived from BMSCs of rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009;23(11):1371–5.
CAS
PubMed
Google Scholar
Park JB. Combination of simvastatin and bone morphogenetic protein-2 enhances the differentiation of osteoblasts by regulating the expression of phospho-Smad1/5/8. Exp Ther Med. 2012;4(2):303–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Lin C, Fang J, Li X, Wang J, Deng S, et al. pH-sensitive nanocarrier-mediated codelivery of Simvastatin and Noggin siRNA for synergistic enhancement of osteogenesis. ACS Appl Mater Interfaces. 2018;10(34):28471–82.
Article
CAS
PubMed
Google Scholar
Tai IC, Wang Y-H, Chen C-H, Chuang S-C, Chang J-K, Ho M-L. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation. Int J Nanomedicine. 2015;10:5881–94.
CAS
PubMed
PubMed Central
Google Scholar
Niu M, Feng X, Zhou L. The role of the ERK1/2 pathway in simvastatin-loaded nanomicelles and simvastatin in regulating the osteogenic effect in MG63 cells. Int J Nanomedicine. 2018;13:8165–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Z, Wu C, Liu Z, Zhang Y, Chi B, Wang B, Ma C, Zhang G, Tian F. Simvastatin stimulates osteogenic differentiation of bone marrow mesenchymal stem cells. Chin J Tissue Eng Res. 2021;25(19):2963–8.
Google Scholar
Yu W-L, Sun T-W, Qi C, Zhao H-K, Ding Z-Y, Zhang Z-W, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep. 2017;7:44129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao Z-S, Zhou W-S, Bai B-L, Cui W, Lv Y-X, Yu X-B, et al. The effects of combined human parathyroid hormone (1–34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs. J Mater Sci Mater Med. 2016;27(3):43.
Article
PubMed
Google Scholar
Biniazan F, Manzari-Tavakoli A, Safaeinejad F, Moghimi A, Rajaei F, Niknejad H. The differentiation effect of bone morphogenetic protein (BMP) on human amniotic epithelial stem cells to express ectodermal lineage markers. Cell Tissue Res. 2021;383(2):751–63.
Article
CAS
PubMed
Google Scholar
Oh J-S, Lee E-J. Enhanced effect of polyethyleneimine-modified graphene oxide and simvastatin on osteogenic differentiation of murine bone marrow-derived mesenchymal stem cells. Biomedicines. 2021;9(5).
Verma NK, Kar AK, Singh A, Jagdale P, Satija NK, Ghosh D, et al. Control release of adenosine potentiate osteogenic differentiation within a bone integrative EGCG-g-NOCC/collagen composite scaffold toward guided bone regeneration in a critical-sized calvarial defect. Biomacromol. 2021;22(7):3069–83.
Article
CAS
Google Scholar
Barresi E, Giacomelli C, Marchetti L, Baglini E, Salerno S, Greco G, et al. Novel positive allosteric modulators of A(2B) adenosine receptor acting as bone mineralisation promoters. J Enzyme Inhib Med Chem. 2021;36(1):286–94.
Article
PubMed
Google Scholar
Hu L, Wen Y, Xu J, Wu T, Zhang C, Wang J, et al. Pretreatment with bisphosphonate enhances osteogenesis of bone marrow mesenchymal stem cells. Stem Cells Dev. 2017;26(2):123–32.
Article
CAS
PubMed
Google Scholar
Gao F, Liu Y, Liu M, Zhu L. Zoledronic acid regulates osteoblast differentiation via the mTORC1 signaling pathway. Int J Clin Exp Med. 2018;11(5):4585–94.
Google Scholar
Gao X, Guan M, Liu X, Xu HHK, Huang Q, Chen L, et al. Sustained delivery of growth factors and alendronate using partially demineralized dentin matrix for endogenous periodontal regeneration. Appl Mater Today. 2021;22: 100922.
Article
Google Scholar
Aly RM, Ellithy MM, Sabry D. Pleiotropic role of simvastatin and alendronate on mesenchymal stem cells. Asian J Pharm Clin Res. 2018;11:555–9.
Article
CAS
Google Scholar
Kim S-H, Choi H-J, Yoon DS, Son C-N. Serial administration of rhBMP-2 and alendronate enhances the differentiation of osteoblasts. Int J Rheum Dis. 2021;24(10):1266–72.
Article
CAS
PubMed
Google Scholar
Jiang P, Mao Z, Gao C. Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells. Acta Biomater. 2015;19:76–84.
Article
CAS
PubMed
Google Scholar
Su W-T, Chiou W-L, Yu H-H, Huang T-Y. Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. Mater Sci Eng C Mater Biol Appl. 2016;58:1036–45.
Article
CAS
PubMed
Google Scholar
Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4(5):117.
Article
PubMed
PubMed Central
Google Scholar
Yuasa M, Yamada T, Taniyama T, Masaoka T, Xuetao W, Yoshii T, et al. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS ONE. 2015;10(2): e0116462.
Article
PubMed
PubMed Central
Google Scholar
Gasson SB, Dobson LK, Chow L, Dow S, Gregory CA, Saunders WB. Optimizing in vitro osteogenesis in canine autologous and induced pluripotent stem cell-derived mesenchymal stromal cells with dexamethasone and BMP-2. Stem Cells Dev. 2020;30(4):214–26.
Article
Google Scholar
Tong Z, Guo J, Glen RC, Morrell NW, Li W. A bone morphogenetic protein (BMP)-derived peptide based on the type I receptor-binding site modifies cell-type dependent BMP signalling. Sci Rep. 2019;9(1):13446.
Article
PubMed
PubMed Central
Google Scholar
Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, et al. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces. 2015;7(29):15777–89.
Article
CAS
PubMed
Google Scholar
Amjadian S, Seyedjafari E, Zeynali B, Shabani I. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm. 2016;507(1–2):1–11.
Article
CAS
PubMed
Google Scholar
Han Y, Kim Y-M, Kim HS, Lee KY. Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep. 2017;7(1):5716.
Article
PubMed
PubMed Central
Google Scholar
Xu L, Zhang L, Wang Z, Li C, Li S, Li L, et al. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 2018;103(4):400–10.
Article
CAS
PubMed
Google Scholar
Zheng S, Zhou C, Yang H, Li J, Feng Z, Liao L, et al. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis-angiogenesis coupling. Front Endocrinol (Lausanne). 2022;13:826660.
Article
PubMed
PubMed Central
Google Scholar
Lee S, Le NH, Kang D. Melatonin alleviates oxidative stress-inhibited osteogenesis of human bone marrow-derived mesenchymal stem cells through AMPK activation. Int J Med Sci. 2018;15(10):1083–91.
Article
PubMed
PubMed Central
Google Scholar
Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, et al. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 2016;61(3):317–27.
Article
CAS
PubMed
Google Scholar
Chan Y-H, Ho K-N, Lee Y-C, Chou M-J, Lew W-Z, Huang H-M, et al. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther. 2022;13(1):73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, et al. Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther. 2021;12(1):150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terauchi M, Tamura A, Yamaguchi S, Yui N. Enhanced cellular uptake and osteogenic differentiation efficiency of melatonin by inclusion complexation with 2-hydroxypropyl β-cyclodextrin. Int J Pharm. 2018;547(1–2):53–60.
Article
CAS
PubMed
Google Scholar
Maioli M, Basoli V, Santaniello S, Cruciani S, Delitala AP, Pinna R, et al. Osteogenesis from dental pulp derived stem cells: a novel conditioned medium including melatonin within a mixture of hyaluronic, butyric, and retinoic acids. Stem Cells Int. 2016;2016:2056416.
Article
PubMed
PubMed Central
Google Scholar
Al Jofi FE, Ma T, Guo D, Schneider MP, Shu Y, Xu HHK, et al. Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells. Cytotherapy. 2018;20(5):650–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Q, Gu Y, Yang H, Shi Q. Metformin enhances osteogenesis and suppresses adipogenesis of human chorionic villous mesenchymal stem cells. Tohoku J Exp Med. 2017;241(1):13–9.
Article
CAS
PubMed
Google Scholar
Jang WG, Kim EJ, Bae I-H, Lee K-N, Kim YD, Kim D-K, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48(4):885–93.
Article
CAS
PubMed
Google Scholar
Wang Y-G, Qu X-H, Yang Y, Han X-G, Wang L, Qiao H, et al. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal. 2016;28(9):1270–82.
Article
CAS
PubMed
Google Scholar
Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HHK, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2018;12(2):437–46.
Article
CAS
PubMed
Google Scholar
Ma J, Zhang ZL, Hu XT, Wang XT, Chen AM. Metformin promotes differentiation of human bone marrow derived mesenchymal stem cells into osteoblast via GSK3β inhibition. Eur Rev Med Pharmacol Sci. 2018;22(22):7962–8.
CAS
PubMed
Google Scholar
Zhang Y-L, Liu F, Li Z-B, He X-T, Li X, Wu R-X, et al. Metformin combats high glucose-induced damage to the osteogenic differentiation of human periodontal ligament stem cells via inhibition of MAPK pathway mediated through NPR3. Research Square; 2022.
Cui Z-K, Sun JA, Baljon JJ, Fan J, Kim S, Wu BM, et al. Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair. Acta Biomater. 2017;58:214–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Seo C-R, Ku J-M, Lee H, Yoon H, Lee J, et al. 3D-printed alginate/phenamil composite scaffolds constituted with microsized core–shell struts for hard tissue regeneration. RSC Adv. 2015;5(37):29335–45.
Article
CAS
Google Scholar
Lo KWH, Kan HM, Laurencin CT. Short-term administration of small molecule phenamil induced a protracted osteogenic effect on osteoblast-like MC3T3-E1 cells. J Tissue Eng Regen Med. 2016;10(6):518–26.
Article
CAS
PubMed
Google Scholar
Lee J-H, Mandakhbayar N, El-Fiqi A, Kim H-W. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater. 2017;60:93–108.
Article
CAS
PubMed
Google Scholar
Fan J, Pi-Anfruns J, Guo M, Im DCS, Cui Z-K, Kim S, et al. Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2. Sci Rep. 2017;7(1):1–13.
Google Scholar
Weng S-J, Yan D-Y, Gu L-J, Chen L, Xie Z-J, Wu Z-Y, et al. Combined treatment with vitamin K2 and PTH enhanced bone formation in ovariectomized rats and increased differentiation of osteoblast in vitro. Chem Biol Interact. 2019;300:101–10.
Article
CAS
PubMed
Google Scholar
Zhang K, Zhang FJ, Zhao WJ, Xing GS, Bai X, Wang Y. Effects of parathyroid hormone-related protein on osteogenic and adipogenic differentiation of human mesenchymal stem cells. Eur Rev Med Pharmacol Sci. 2014;18(11):1610–7.
CAS
PubMed
Google Scholar
Yu B, Zhao X, Yang C, Crane J, Xian L, Lu W, et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res. 2012;27(9):2001–14.
Article
CAS
PubMed
Google Scholar
Riccitiello F, De Luise A, Conte R, D’Aniello S, Vittoria V, Di Salle A, et al. Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. Eur Polym J. 2018;99:289–97.
Article
CAS
Google Scholar
Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 Cells. Med Sci Monit. 2018;24:2045–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi Y, Yoon DS, Lee K-M, Choi SM, Lee M-H, Park KH, et al. Enhancement of mesenchymal stem cell-driven bone regeneration by resveratrol-mediated SOX2 regulation. Aging Dis. 2019;10(4):818–33.
Article
PubMed
PubMed Central
Google Scholar
Borsani E, Bonazza V, Buffoli B, Nocini PF, Albanese M, Zotti F, et al. Beneficial effects of concentrated growth factors and resveratrol on human osteoblasts in vitro treated with bisphosphonates. Biomed Res Int. 2018;2018:4597321.
Article
PubMed
PubMed Central
Google Scholar
Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 2007;14(12):806–14.
Article
CAS
PubMed
Google Scholar
Tseng P-C, Hou S-M, Chen R-J, Peng H-W, Hsieh C-F, Kuo M-L, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10):2552–63.
Article
CAS
PubMed
Google Scholar
Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS ONE. 2012;7(4): e35712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Hu Z, Wu J, Mei Y, Zhang Q, Zhang H, et al. Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via bmi1 activation in mice. J Bone Miner Res. 2019;34(6):1169–81.
Article
CAS
PubMed
Google Scholar
Zhao X-E, Yang Z, Zhang H, Yao G, Liu J, Wei Q, et al. Resveratrol promotes osteogenic differentiation of canine bone marrow mesenchymal stem cells through Wnt/beta-catenin signaling pathway. Cell Reprogram. 2018;20(6):371–81.
Article
CAS
PubMed
Google Scholar
Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T, Azuma T. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol. 2015;5(2): 140201.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Dosier CR, Park JH, De S, Guldberg RE, Boyan BD, et al. Mineralization of three-dimensional osteoblast cultures is enhanced by the interaction of 1α,25-dihydroxyvitamin D3 and BMP2 via two specific vitamin D receptors. J Tissue Eng Regen Med. 2016;10(1):40–51.
Article
CAS
PubMed
Google Scholar
Tourkova IL, Liu L, Sutjarit N, Larrouture QC, Luo J, Robinson LJ, et al. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Lab Invest. 2017;97(9):1072–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gigante A, Brugè F, Cecconi S, Manzotti S, Littarru GP, Tiano L. Vitamin MK-7 enhances vitamin D3-induced osteogenesis in hMSCs: modulation of key effectors in mineralization and vascularization. J Tissue Eng Regen Med. 2015;9(6):691–701.
Article
CAS
PubMed
Google Scholar
Xiong Y, Zhang Y, Xin N, Yuan Y, Zhang Q, Gong P, et al. 1α,25-Dihydroxyvitamin D3 promotes osteogenesis by promoting Wnt signaling pathway. J Steroid Biochem Mol Biol. 2017;174:153–60.
Article
CAS
PubMed
Google Scholar
Zhou J, Wang F, Ma Y, Wei F. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system. Osteoporos Int. 2018;29(8):1917–26.
Article
CAS
PubMed
Google Scholar
Zhao X-L, Chen J-J, Zhang G-N, Wang Y-C, Si S-Y, Chen L-F, et al. Small molecule T63 suppresses osteoporosis by modulating osteoblast differentiation via BMP and WNT signaling pathways. Sci Rep. 2017;7(1):1–14.
Google Scholar
Lanier M, Schade D, Willems E, Tsuda M, Spiering S, Kalisiak J, et al. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. J Med Chem. 2012;55(2):697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Ryan DA, Dwyer MA, Cashman JR. Synergistic effect of Wnt modulatory small molecules and an osteoinductive ceramic on C2C12 cell osteogenic differentiation. Bone. 2014;67:109–21.
Article
CAS
PubMed
Google Scholar
Kashiwagi M, Hojo H, Kitaura Y, Maeda Y, Aini H, Takato T, et al. Local administration of a hedgehog agonist accelerates fracture healing in a mouse model. Biochem Biophys Res Commun. 2016;479(4):772–8.
Article
CAS
PubMed
Google Scholar
Kanke K, Masaki H, Saito T, Komiyama Y, Hojo H, Nakauchi H, et al. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Rep. 2014;2(6):751–60.
Article
CAS
Google Scholar
Gupta R, Mehan S, Sethi P, Prajapati A, Alshammari A, Alharbi M, et al. Smo-Shh agonist purmorphamine prevents neurobehavioral and neurochemical defects in 8-OH-DPAT-induced experimental model of obsessive-compulsive disorder. Brain Sci. 2022. https://doi.org/10.3390/brainsci12030342.
Article
PubMed
PubMed Central
Google Scholar
Wöltje M, Böbel M, Heiland M, Beck-Broichsitter B, Al-Dam A, Gröbe A, et al. Purmorphamine and oxysterols accelerate and promote osteogenic differentiation of mesenchymal stem cells in vitro. In Vivo. 2015;29(2):247–54.
PubMed
Google Scholar
Arianna C, Eliana C, Flavio A, Marco R, Giacomo D, Manuel S, et al. Rapid rapamycin-only induced osteogenic differentiation of blood-derived stem cells and their adhesion to natural and artificial scaffolds. Stem Cells Int. 2017;2017:2976541.
Article
PubMed
PubMed Central
Google Scholar
Ahmadi A, Ebadi S, Tayebi T, Ebadi A, Niknejad H. The Osteogenic Differentiation Effect of Bone Morphogenetic Protein-9 with Phenamil and Simvastatin on Intact Human Amniotic Epithelial Stem Cells. Iranian Biomed J.
Wang C-Z, Chen S-M, Chen C-H, Wang C-K, Wang G-J, Chang J-K, et al. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials. 2010;31(33):8674–83.
Article
CAS
PubMed
Google Scholar
Zhou Z-F, Sun T-W, Chen F, Zuo D-Q, Wang H-S, Hua Y-Q, et al. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials. 2017;121:1–14.
Article
CAS
PubMed
Google Scholar
Fukui T, Ii M, Shoji T, Matsumoto T, Mifune Y, Kawakami Y, et al. Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res. 2012;27(5):1118–31.
Article
CAS
PubMed
Google Scholar
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, et al. Application of BMP in bone tissue engineering. Front Bioeng Biotechnol. 2022;10: 810880.
Article
PubMed
PubMed Central
Google Scholar
Shim J, Kim KT, Kim KG, Choi UY, Kyung JW, Sohn S, et al. Safety and efficacy of Wharton’s jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: a phase I/IIa study. Stem Cells Transl Med. 2021;10(4):554–67.
Article
CAS
PubMed
Google Scholar