Laurencin CT, Khan Y, El-Amin SF: Bone graft substitutes. Expert Rev Med Devices. 2006, 1: 49-57.
Article
Google Scholar
De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T: Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007, 89: 649-658. 10.2106/JBJS.F.00465.
Article
PubMed
Google Scholar
Jahangir AANRM, Mehta S, Sharan A, Washington Health Policy Fellows: Bone-graft substitutes in orthopaedic surgery. AAOS Now. 2008, 2: [http://www6.aaos.org/news/PDFopen/PDFopen.cfm?page_url=http://www.aaos.org/news/aaosnow/jan08/reimbursement2.asp]
Google Scholar
Mroz TE, Joyce MJ, Lieberman IH, Steinmetz MP, Benzel EC, Wang JC: The use of allograft bone in spine surgery: is it safe?. Spine J. 2009, 9: 303-308. 10.1016/j.spinee.2008.06.452.
Article
PubMed
Google Scholar
Ben-David D, Kizhner TA, Kohler T, Müller R, Livne E, Srouji S: Cell-scaffold transplant of hydrogel seeded with rat bone marrow progenitors for bone regeneration. J Craniomaxillofac Surg. 2011, 39: 364-371. 10.1016/j.jcms.2010.09.001.
Article
PubMed
Google Scholar
Wang Y, Bella E, Lee CSD, Migliaresi C, Pelcaster L, Schwartz Z, Boyan BD, Motta A: The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials. 2010, 31: 4672-4681. 10.1016/j.biomaterials.2010.02.006.
Article
PubMed
CAS
Google Scholar
Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Tae G, Noh I, Lee SH, Park Y, Sun K: Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007, 28: 1830-1837. 10.1016/j.biomaterials.2006.11.050.
Article
PubMed
CAS
Google Scholar
Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH: Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res. 1980, 14: 107-132. 10.1002/jbm.820140203.
Article
PubMed
CAS
Google Scholar
Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV: Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res. 1980, 14: 511-528. 10.1002/jbm.820140417.
Article
PubMed
CAS
Google Scholar
Dard M, Sewing A, Meyer J, Verrier S, Roessler S, Scharnweber D: Tools for tissue engineering of mineralized oral structures. Clin Oral Investig. 2000, 4: 126-129. 10.1007/s007840050128.
Article
PubMed
CAS
Google Scholar
Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C: Silk based biomaterials to heal critical sized femur defects. Bone. 2006, 39: 922-931. 10.1016/j.bone.2006.04.019.
Article
PubMed
CAS
Google Scholar
Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ: Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998, 16: 406-413. 10.1002/jor.1100160403.
Article
PubMed
CAS
Google Scholar
Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI: Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999, 5: 267-277. 10.1089/ten.1999.5.267.
Article
PubMed
CAS
Google Scholar
Pfeiffer E, Vickers SM, Frank E, Grodzinsky AJ, Spector M: The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Osteoarthr Cartil. 2008, 16: 1237-1244. 10.1016/j.joca.2008.02.014.
Article
PubMed
CAS
Google Scholar
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.
Article
PubMed
CAS
Google Scholar
Kadiyala S, Young RG, Thiede MA, Bruder SP: Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997, 6: 125-134. 10.1016/S0963-6897(96)00279-5.
Article
PubMed
CAS
Google Scholar
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997, 64: 295-312. 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I.
Article
PubMed
CAS
Google Scholar
Riccio M, Maraldi T, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G, Motta A, Migliaresi C, De Pol A: Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A. 2012, 18: 1006-1013. 10.1089/ten.tea.2011.0542.
Article
PubMed
CAS
Google Scholar
Maraldi T, Riccio M, Resca E, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G, Motta A, Migliaresi C, Marzona L, De Pol A: Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix. Tissue Eng Part A. 2011, 17: 2833-2843. 10.1089/ten.tea.2011.0062.
Article
PubMed
CAS
Google Scholar
Navarro M, Michiardi A, Castano OJ, Planell A: Biomaterials in orthopaedics. J R Soc Interface. 2008, 5: 1137-1158. 10.1098/rsif.2008.0151.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jain RK, Au P, Tam J, Duda DG, Fukumura D: Engineering vascularized tissue. Nat Biotechnol. 2005, 23: 821-823. 10.1038/nbt0705-821.
Article
PubMed
CAS
Google Scholar
Karageorgiou V, Kaplan D: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005, 26: 5474-5491. 10.1016/j.biomaterials.2005.02.002.
Article
PubMed
CAS
Google Scholar
Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW: The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (varepsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011, 32: 8108-8117. 10.1016/j.biomaterials.2011.07.022.
Article
PubMed
CAS
Google Scholar
Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A: Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A. 2011, 96: 566-574.
Article
PubMed
Google Scholar
Pisciotta A, Riccio M, Carnevale G, Beretti F, Gibellini L, Maraldi T, Cavallini GM, Ferrari A, Bruzzesi G, De Pol A: Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS One. 2012, 7: e50542-10.1371/journal.pone.0050542.
Article
PubMed
CAS
PubMed Central
Google Scholar
De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A: Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007, 25: 100-106. 10.1038/nbt1274.
Article
PubMed
CAS
Google Scholar
Riccio M, Resca E, Maraldi T, Pisciotta A, Ferrari A, Bruzzesi G, De Pol A: Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures. Eur J Histochem. 2010, 10: e46-
Article
Google Scholar
Maraldi T, Riccio M, Sena P, Marzona L, Nicoli A, La Marca A, Marmiroli S, Bertacchini J, La Sala G, De Pol A: MATER protein as substrate of PKCepsilon in human cumulus cells. Mol Hum Reprod. 2009, 15: 499-506. 10.1093/molehr/gap048.
Article
PubMed
CAS
Google Scholar
Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP: Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007, 21: 7-11.
Google Scholar
Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari PL, Ricci F, Pasquinelli G, Orrico C, Grossi A, Prati C, Bagnara GP: Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol. 2009, 22: 699-706.
PubMed
CAS
Google Scholar
Sommerfeldt DW, Rubin CT: Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001, 10: 86-95. 10.1007/s005860100283.
Article
Google Scholar
Tao J, Sun Y, Wang Q, Liu C: Induced endothelial cells enhance osteogenesis and vascularization of mesenchymal stem cells. Cells Tissues Organs. 2009, 190: 185-193. 10.1159/000218139.
Article
Google Scholar
Yancopoulos GD, Davis S, Gale NW: Vascular specific growth factors and blood vessel formation. Nature. 2000, 407: 242-248. 10.1038/35025215.
Article
PubMed
CAS
Google Scholar
Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H: Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 2004, 10: 789-795. 10.1089/1076327041348338.
Article
PubMed
CAS
Google Scholar
Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H: Engineering bone: challenges and obstacles. J Cell Mol Med. 2005, 9: 72-84. 10.1111/j.1582-4934.2005.tb00338.x.
Article
PubMed
CAS
Google Scholar
Schleier P, Hyckel P, Fried W, Beinemann J, Wurdinger J, Hinz M, Steen M, Schumann D: Vertical distraction of fibula transplant in a case of mandibular defect caused by shotgun injury. Int J Oral Maxillofac Surg. 2006, 35: 861-864. 10.1016/j.ijom.2006.02.010.
Article
PubMed
CAS
Google Scholar
de Mendonça CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR: Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg. 2008, 19: 204-210.
Google Scholar
De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A, D'Aquino R, Laino L, Colacurci N, Papaccio G: Amniotic fluid-derived MSCs lead to bone differentiation when co-cultured with dental pulp stem cells. Tissue Eng Part A. 2011, 17: 645-653. 10.1089/ten.tea.2010.0340.
Article
PubMed
CAS
Google Scholar
Hutmacher DW: Scaffold design and fabrication technologies for engineering tissue state of the art and future perspectives. J Biomater Sci. 2001, 12: 107-124. 10.1163/156856201744489.
Article
CAS
Google Scholar
Mankani MH, Kuznetsov SA, Wolfe RM, Marshall GW, Robey PG: In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible. Stem Cells. 2006, 24: 2140-2149. 10.1634/stemcells.2005-0567.
Article
PubMed
Google Scholar
Rodrigues M, Lee BK, Lee SJ, Gomes ME, Reis RL, Atala A, Too JJ: The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials. 2012, 33: 6069-6078. 10.1016/j.biomaterials.2012.05.016.
Article
PubMed
CAS
Google Scholar
Nielsen JS, McNagny KM: Novel functions of the CD34 family. J Cell Science. 2008, 121: 3682-3692.
Article
Google Scholar
Benavides OM, Petsche JJ, Moise KJ, Johnson A, Jacot JG: Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells. Tissue Eng Part A. 2012, 18: 1123-1131. 10.1089/ten.tea.2011.0392.
Article
PubMed
CAS
PubMed Central
Google Scholar