El-Badawy A, El-Badri N. Regulators of pluripotency and their implications in regenerative medicine. Stem Cells Cloning. 2015;8:67–80. doi:10.2147/SCCAA.S80157.
PubMed
PubMed Central
Google Scholar
Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308. doi:10.1089/scd.2010.0466.
Article
PubMed
CAS
Google Scholar
Scully T. Diabetes in numbers. Nature. 2012;485(7398):S2–3.
Article
PubMed
CAS
Google Scholar
Gaba RC, Garcia-Roca R, Oberholzer J. Pancreatic islet cell transplantation: an update for interventional radiologists. J Vasc Interv Radiol. 2012;23(5):583–94. doi:10.1016/j.jvir.2012.01.057. quiz 594.
Article
PubMed
Google Scholar
Dowling P, O'Driscoll L, O'Sullivan F, Dowd A, Henry M, Jeppesen PB, et al. Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics. 2006;6(24):6578–87. doi:10.1002/pmic.200600298.
Article
PubMed
CAS
Google Scholar
Hirshberg B. Lessons learned from the international trial of the edmonton protocol for islet transplantation. Curr Diab Rep. 2007;7(4):301–3.
Article
PubMed
Google Scholar
McCall M, Shapiro AM. Update on islet transplantation. Cold Spring Harb Perspect Med. 2012;2(7):a007823. doi:10.1101/cshperspect.a007823.
Article
PubMed
PubMed Central
Google Scholar
Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30. doi:10.1056/NEJMoa061267.
Article
PubMed
CAS
Google Scholar
Ackermann AM, Gannon M. Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol. 2007;38(1–2):193–206. doi:10.1677/JME-06-0053.
Article
PubMed
CAS
Google Scholar
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–6. doi:10.1038/nature02520.
Article
PubMed
CAS
Google Scholar
Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest. 2004;114(7):963–8. doi:10.1172/JCI22098.
Article
PubMed
PubMed Central
CAS
Google Scholar
Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–26. doi:10.1016/j.devcel.2007.04.011.
Article
PubMed
CAS
Google Scholar
Li VC, Kirschner MW. Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111(26):9503–8. doi:10.1073/pnas.1408638111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155(1):135–47. doi:10.1016/j.cell.2013.08.031.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roccio M, Schmitter D, Knobloch M, Okawa Y, Sage D, Lutolf MP. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 2013;140(2):459–70. doi:10.1242/dev.086215.
Article
PubMed
CAS
Google Scholar
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389–94. doi:10.1126/science.1058866.
Article
PubMed
CAS
Google Scholar
Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med. 2012;29(1):14–23. doi:10.1111/j.1464-5491.2011.03433.x.
Article
PubMed
CAS
Google Scholar
Brolen GK, Heins N, Edsbagge J, Semb H. Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes. 2005;54(10):2867–74.
Article
PubMed
CAS
Google Scholar
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. doi:10.1038/nbt1393.
Article
PubMed
CAS
Google Scholar
Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene. 2002;21(54):8320–33. doi:10.1038/sj.onc.1206015.
Article
PubMed
CAS
Google Scholar
White J, Dalton S. Cell cycle control of embryonic stem cells. Stem Cell Rev. 2005;1(2):131–8. doi:10.1385/SCR:1:2:131.
Article
PubMed
CAS
Google Scholar
Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S. Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene. 2004;23(2):491–502. doi:10.1038/sj.onc.1207133.
Article
PubMed
CAS
Google Scholar
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, et al. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev. 2012;22(2):279–95. doi:10.1089/scd.2012.0168.
Article
PubMed
Google Scholar
Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol. 2006;209(3):883–93. doi:10.1002/jcp.20776.
Article
PubMed
CAS
Google Scholar
Koledova Z, Kramer A, Kafkova LR, Divoky V. Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal. Stem Cells Dev. 2010;19(11):1663–78. doi:10.1089/scd.2010.0136.
Article
PubMed
CAS
Google Scholar
Ghule PN, Medina R, Lengner CJ, Mandeville M, Qiao M, Dominski Z, et al. Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J Cell Physiol. 2011;226(5):1149–56. doi:10.1002/jcp.22440.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruiz S, Panopoulos AD, Herrerias A, Bissig KD, Lutz M, Berggren WT, et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol. 2011;21(1):45–52. doi:10.1016/j.cub.2010.11.049.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Neganova I, Przyborski S, Yang C, Cooke M, Atkinson SP, et al. A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol. 2009;184(1):67–82. doi:10.1083/jcb.200801009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56. doi:10.1016/j.cell.2005.08.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R. In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach. BMC Genomics. 2009;10:314. doi:10.1186/1471-2164-10-314.
Article
PubMed
PubMed Central
Google Scholar
Gunaratne PH. Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther. 2009;4(3):168–77.
Article
PubMed
CAS
Google Scholar
Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM. Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome. 2007;18(5):316–27. doi:10.1007/s00335-007-9032-6.
Article
PubMed
CAS
Google Scholar
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell. 2008;3(5):475–9. doi:10.1016/j.stem.2008.10.002.
Article
PubMed
CAS
Google Scholar
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460(7259):1132–5. doi:10.1038/nature08235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009;460(7259):1145–8. doi:10.1038/nature08285.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074–82. doi:10.1038/ncb1314.
Article
PubMed
CAS
Google Scholar
Xu B, Zhang K, Huang Y. Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA. 2009;15(3):357–61. doi:10.1261/rna.1368009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. doi:10.1126/science.1151526.
Article
PubMed
CAS
Google Scholar
Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462(7273):595–601. doi:10.1038/nature08592.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campbell PA, Perez-Iratxeta C, Andrade-Navarro MA, Rudnicki MA. Oct4 targets regulatory nodes to modulate stem cell function. PLoS One. 2007;2(6):e553. doi:10.1371/journal.pone.0000553.
Article
PubMed
PubMed Central
Google Scholar
Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 2005;19(17):1986–99. doi:10.1101/gad.342305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fujii-Yamamoto H, Kim JM, Arai K, Masai H. Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem. 2005;280(13):12976–87. doi:10.1074/jbc.M412224200.
Article
PubMed
CAS
Google Scholar
Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming. J Cell Physiol. 2010;222(1):103–10. doi:10.1002/jcp.21925.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang R, Guo YL. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells. Exp Cell Res. 2012;318(16):2094–104. doi:10.1016/j.yexcr.2012.05.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neganova I, Zhang X, Atkinson S, Lako M. Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene. 2009;28(1):20–30. doi:10.1038/onc.2008.358.
Article
PubMed
CAS
Google Scholar
Neganova I, Vilella F, Atkinson SP, Lloret M, Passos JF, von Zglinicki T, et al. An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells. 2011;29(4):651–9. doi:10.1002/stem.620.
Article
PubMed
CAS
Google Scholar
Koledova Z, Kafkova LR, Calabkova L, Krystof V, Dolezel P, Divoky V. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells Dev. 2010;19(2):181–94. doi:10.1089/scd.2009.0065.
Article
PubMed
CAS
Google Scholar
Miura T, Luo Y, Khrebtukova I, Brandenberger R, Zhou D, Thies RS, et al. Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev. 2004;13(6):694–715. doi:10.1089/scd.2004.13.694.
Article
PubMed
CAS
Google Scholar
Filipczyk AA, Laslett AL, Mummery C, Pera MF. Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Res. 2007;1(1):45–60. doi:10.1016/j.scr.2007.09.002.
Article
PubMed
CAS
Google Scholar
Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002;12(9):432–8.
Article
PubMed
CAS
Google Scholar
Savatier P, Huang S, Szekely L, Wiman KG, Samarut J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene. 1994;9(3):809–18.
PubMed
CAS
Google Scholar
Coronado D, Godet M, Bourillot PY, Tapponnier Y, Bernat A, Petit M, et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 2013;10(1):118–31. doi:10.1016/j.scr.2012.10.004.
Article
PubMed
Google Scholar
Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocana A, Vasavada R, et al. Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev. 2006;27(4):356–70. doi:10.1210/er.2006-0004.
Article
PubMed
CAS
Google Scholar
Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol. 2006;22:311–38. doi:10.1146/annurev.cellbio.22.010305.104425.
Article
PubMed
CAS
Google Scholar
Kohler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ. Cell cycle control of beta-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab. 2011;300(1):E221–30. doi:10.1152/ajpendo.00496.2010.
Article
PubMed
Google Scholar
Lee YC, Nielsen JH. Regulation of beta cell replication. Mol Cell Endocrinol. 2009;297(1–2):18–27. doi:10.1016/j.mce.2008.08.033.
Article
PubMed
CAS
Google Scholar
Mettus RV, Rane SG. Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene. 2003;22(52):8413–21. doi:10.1038/sj.onc.1206888.
Article
PubMed
CAS
Google Scholar
Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet. 1999;22(1):44–52. doi:10.1038/8751.
Article
PubMed
CAS
Google Scholar
Cozar-Castellano I, Takane KK, Bottino R, Balamurugan AN, Stewart AF. Induction of beta-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1. Diabetes. 2004;53(1):149–59.
Article
PubMed
CAS
Google Scholar
Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev. 1999;13(22):3027–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee JH, Jo J, Hardikar AA, Periwal V, Rane SG. Cdk4 regulates recruitment of quiescent beta-cells and ductal epithelial progenitors to reconstitute beta-cell mass. PLoS One. 2010;5(1):e8653. doi:10.1371/journal.pone.0008653.
Article
PubMed
PubMed Central
Google Scholar
Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25(9):3752–62. doi:10.1128/MCB.25.9.3752-3762.2005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hinault C, Hu J, Maier BF, Mirmira RG, Kulkarni RN. Differential expression of cell cycle proteins during ageing of pancreatic islet cells. Diabetes Obes Metab. 2008;10 Suppl 4:136–46. doi:10.1111/j.1463-1326.2008.00947.x.
Article
PubMed
Google Scholar
Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC. Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes. 2005;54(3):712–9.
Article
PubMed
CAS
Google Scholar
Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004;118(4):493–504. doi:10.1016/j.cell.2004.08.002.
Article
PubMed
CAS
Google Scholar
Kushner JA. Beta-cell growth: an unusual paradigm of organogenesis that is cyclin D2/Cdk4 dependent. Cell Cycle. 2006;5(3):234–7.
Article
PubMed
CAS
Google Scholar
He LM, Sartori DJ, Teta M, Opare-Addo LM, Rankin MM, Long SY, et al. Cyclin D2 protein stability is regulated in pancreatic beta-cells. Mol Endocrinol. 2009;23(11):1865–75. doi:10.1210/me.2009-0057.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, et al. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int. 2014;2014:832736. doi:10.1155/2014/832736.
Article
PubMed
PubMed Central
Google Scholar
Cheng X, Ying L, Lu L, Galvao AM, Mills JA, Lin HC, et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell. 2012;10(4):371–84. doi:10.1016/j.stem.2012.02.024.
Article
PubMed
PubMed Central
CAS
Google Scholar
D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401. doi:10.1038/nbt1259.
Article
PubMed
Google Scholar
Hrvatin S, O'Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, et al. Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci U S A. 2014;111(8):3038–43. doi:10.1073/pnas.1400709111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo SC, et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A. 2014;20(1–2):424–33. doi:10.1089/ten.TEA.2013.0257.
Article
PubMed
CAS
Google Scholar
Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12(2):224–37. doi:10.1016/j.stem.2012.11.023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Annicotte JS, Blanchet E, Chavey C, Iankova I, Costes S, Assou S, et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat Cell Biol. 2009;11(8):1017–23. doi:10.1038/ncb1915.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim SY, Rane SG. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development. 2011;138(10):1903–12. doi:10.1242/dev.061481.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle. 2012;11(4):695–705. doi:10.4161/cc.11.4.19120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development. 2000;127(22):4905–13.
PubMed
CAS
Google Scholar
Kim SK, Hebrok M, Li E, Oh SP, Schrewe H, Harmon EB, et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000;14(15):1866–71.
PubMed
PubMed Central
CAS
Google Scholar
Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A. 2003;100(25):14920–5. doi:10.1073/pnas.2436557100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ, et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 2012;31(11):2432–42. doi:10.1002/stem.1489.
Article
Google Scholar
Fiorina P, Shapiro AM, Ricordi C, Secchi A. The clinical impact of islet transplantation. Am J Transplant. 2008;8(10):1990–7. doi:10.1111/j.1600-6143.2008.02353.x.
Article
PubMed
CAS
Google Scholar
Secchi A, Caldara R, La Rocca E, Fiorina P, Di Carlo V. Cardiovascular disease and neoplasms after pancreas transplantation. Lancet. 1998;352(9121):65. author reply 66.
Article
PubMed
CAS
Google Scholar
Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry Jr RJ, et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet. 2011;378(9790):487–97. doi:10.1016/S0140-6736(11)60931-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh AM, Dalton S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell. 2009;5(2):141–9. doi:10.1016/j.stem.2009.07.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin J, Hunt SL, Dubus P, Sotillo R, Nehme-Pelluard F, Magnuson MA, et al. Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene. 2003;22(34):5261–9. doi:10.1038/sj.onc.1206506.
Article
PubMed
CAS
Google Scholar
Cozar-Castellano I, Weinstock M, Haught M, Velazquez-Garcia S, Sipula D, Stewart AF. Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes. 2006;55(1):70–7.
Article
PubMed
CAS
Google Scholar
Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, et al. Cyclin E ablation in the mouse. Cell. 2003;114(4):431–43.
Article
PubMed
CAS
Google Scholar
Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ. Cyclin A1 is required for meiosis in the male mouse. Nat Genet. 1998;20(4):377–80. doi:10.1038/3855.
Article
PubMed
CAS
Google Scholar