Harcourt B, Penfold S, Forbes J. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol. 2013;9(2):113–23.
Article
CAS
PubMed
Google Scholar
IDF. International Diabetes Federation. IDF Diabetes Atlas. 7th ed. 2015. http://www.diabetesatlas.org/resources/2015-atlas.html. Accessed 1 Apr 2016.
Shapiro A, Lakey J, Ryan E, Korbutt G, Toth E, Warnock G, Kneteman N, Rajotte R. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.
Article
CAS
PubMed
Google Scholar
Bruin JE, Rezania A, Kieffer TJ. Replacing and safeguarding pancreatic β cells for diabetes. Sci Transl Med. 2015;7(316):316 ps323.
Pagliuca F, Millman J, Gurtler M, Segel M, Van Dervort A, Ryu J, Peterson Q, Greiner D, Melton D. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rezania A, Bruin J, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotech. 2014;32(11):1121–33.
Article
CAS
Google Scholar
Wu X, Liu C, Xu K, Mao X, Zhu J, Jiang J, Cui D, Zhang M, Xu Y, Liu C. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol. 2007;13(24):3342–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao K, Chao K, Fu Y, Liu S. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3(1):e1451.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Jiang X, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004;10(20):3016–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Omar R, Beroud J, Stoltz J, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell based therapies? Tissue Eng Part B Rev. 2014;20:523–44.
Article
PubMed
Google Scholar
La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasà L, Cappello F, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009;131(2):267–82.
Article
PubMed
Google Scholar
Bhonde R, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol. 2014;46:90–102.
Article
CAS
PubMed
Google Scholar
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 2011;7(2):342–63.
Article
PubMed
Google Scholar
Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, Hua R, Niu X, Shi J, An Y. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther. 2014;5(2):57.
Article
PubMed
PubMed Central
Google Scholar
Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, Gao H, Zhao W, Yan S, Wang Y. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine. 2014;45(2):279–87.
Article
CAS
PubMed
Google Scholar
El-Demerdash RF, Hammad LN, Kamal MM, El Mesallamy HO. A comparison of Wharton’s jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy. Regen Med. 2015;10(7):841–55.
Article
CAS
PubMed
Google Scholar
Wong R. Extrinsic factors involved in the differentiation of stem cells into insulin-producing cells: an overview. Exp Diabetes Res. 2011;2011:15.
Article
Google Scholar
Champeris T, Jones P. Generating pancreatic β-cells from embryonic stem cells by manipulating signaling pathways. J Endocrinol. 2010;206(1):13–26.
Article
Google Scholar
Tang D, Cao L, Burkhardt B, Xia C, Litherland S, Atkinson M, Yang L. In vivo and In vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53(7):1721–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hrvatin S, O'Donnell C, Deng F, Millman J, Pagliuca F, DiIorio P, Rezania A, Gifford D, Melton D. Differentiated human stem cells resemble fetal, not adult, β-cells. Proc Natl Acad Sci U S A. 2014;11(8):3038–43.
Article
Google Scholar
Thorens B, Porret A, Bühler L, Deng S, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor: demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes. 1993;42(11):1678–82.
Article
CAS
PubMed
Google Scholar
Li H, Lam A, Xu A, Sl Lam K, Kim Chung S. High dosage of exendin-4 increased early insulin secretion in differentiated beta cells from mouse embryonic stem cells. Acta Pharmacol Sin. 2010;31(5):570–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabr MM, Sobh MM, Zakaria MM, Refaie AF, Ghoneim MA. Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp Clin Transplant. 2008;6(3):236–43.
PubMed
Google Scholar
Phuc P, Nhung T, Loan D, Chung D, Ngoc P. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim. 2011;47(1):54–63.
Article
CAS
PubMed
Google Scholar
Eng J, Kleinman W, Singh L, Singh G, Raufman J. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267(11):7402–5.
CAS
PubMed
Google Scholar
Xu G, Stoffers D, Habener J, Bonner-Weir S. Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48(12):2270–6.
Article
CAS
PubMed
Google Scholar
Fong C, Chak L, Biswas A, Tan J, Gauthaman K, Chan W, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep. 2011;7(1):1–16.
Article
CAS
Google Scholar
Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. BioMed Res Int. 2015;2015:11.
Article
Google Scholar
Petsa A, Gargani S, Felesakis A, Grigoriadis N, Grigoriadis I. Effectiveness of protocol for the isolation of Wharton’s Jelly stem cells in large-scale applications. In Vitro Cell Dev Biol Anim. 2009;45(10):573–6.
Article
PubMed
Google Scholar
Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells. 2002;20(4):284–92.
Article
CAS
PubMed
Google Scholar
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.
Article
CAS
PubMed
Google Scholar
Pagliuca F, Melton D. How to make a functional β-cell. Development. 2013;140(12):2472–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dave S. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther. 2013;8(6):471–83.
Article
CAS
PubMed
Google Scholar
Zhou H, Li D, Shi C, Xin T, Yang J, Zhou Y, Hu S, Tian F, Wang J, Chen Y. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep. 2015;5:12898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khorsandi L, Saremy S, Khodadadi A, Dehbashi F. Effects of exendine-4 on the differentiation of insulin producing cells from rat adipose-derived mesenchymal stem cells. Cell J (Yakhteh). 2016;17(4):720–9.
Google Scholar
Nejad-Dehbashi F, Hashemitabar M, Orazizadeh M, Bahramzadeh S, Shahhosseini Pourshoushtary E, Khorsandi L. The effects of exendine-4 on insulin producing cell differentiation from rat bone marrow-derived mesenchymal stem cells. Cell J (Yakhteh). 2014;16(2):187–94.
CAS
Google Scholar
Lee Y, Jun H. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014;63(1):9–19.
Article
CAS
PubMed
Google Scholar
Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.
Article
CAS
PubMed
Google Scholar
Kodama S, Toyonaga T, Kondo T, Matsumoto K, Tsuruzoe K, Kawashima J, Goto H, Kume K, Kume S, Sakakida M, et al. Enhanced expression of PDX-1 and Ngn3 by exendin-4 during beta cell regeneration in STZ-treated mice. Biochem Biophys Res Commun. 2005;327(4):1170–8.
Article
CAS
PubMed
Google Scholar
Hui H, Perfetti R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol. 2002;146(2):129–41.
Article
CAS
PubMed
Google Scholar
Kubo A, Stull R, Takeuchi M, Bonham K, Gouon-Evans V, Sho M, Iwano M, Saito Y, Keller G, Snodgrass R. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population. PLoS One. 2011;6(9):e24058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiroi A, Ueda S, Ouji Y, Saito K, Moriya K, Sugie Y, Fukui H, Ishizaka S, Yoshikawa M. Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World J Gastroenterol. 2005;11(27):4161–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development. 2005;132(13):3139–49.
Article
CAS
PubMed
Google Scholar
May CL. The role of Islet-1 in the endocrine pancreas: lessons from pancreas specific Islet-1 deficient mice. Islets. 2010;2(2):121–3.
Article
PubMed
Google Scholar
Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA, Stein R. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes. 2010;59(10):2530–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic beta-cells. Best Pract Res Clin Endocrinol Metab. 2015;29(6):821–31.
Article
PubMed
Google Scholar
Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, Tan Y, Wintergerst KA, Li Y. Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia. PLoS One. 2016;11(1):e0145838.
Article
PubMed
PubMed Central
Google Scholar