Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72 [PMID:19043850]. http://www.ncbi.nlm.nih.gov/pubmed/19043850.
Article
PubMed
Google Scholar
Kasuya A, Tokura Y. Attempts to accelerate wound healing. J Dermatol Sci. 2014;76:169–72 [PMID: 25468357]. https://doi.org/10.1016/j.jdermsci.2014.11.001.
Article
PubMed
Google Scholar
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58:81–94 [PMID: 27974711]. https://doi.org/10.1159/000454919.
Article
PubMed
Google Scholar
Wang ZL, He RZ, Tu B, He JS, Cao X, Xia HS, Ba HL, Wu S, Peng C, Xiong K. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal necrosis in juvenile rabbits. Curr Med Sci. 2018;38:277–88 [PMID: 30074186]. https://doi.org/10.1007/s11596-018-1876-3.
Article
CAS
PubMed
Google Scholar
Teng M, Huang Y, Zhang H. Application of stems cells in wound healing--an update. Wound Repair Regen. 2014;22:151–60 [PMID: 24635168]. https://doi.org/10.1111/wrr.12152.
Article
PubMed
Google Scholar
Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339–73 [PMID]. https://doi.org/10.1146/annurev.cellbio.22.010305.104357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell. 2015;16:465–76 [PMID]. https://doi.org/10.1016/j.stem.2015.04.014.
Article
CAS
PubMed
Google Scholar
W FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science. 2014;346:937–40 [PMID: PMC4358898]. https://doi.org/10.1038/nm.3643.
Article
CAS
Google Scholar
Gonzales KAU, Fuchs E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell. 2017;43:387–401 [PMID: PMC5797699]. https://doi.org/10.1016/j.devcel.2017.10.001.
Article
CAS
PubMed
Google Scholar
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20:847–56 [PMID: PMC4358898]. https://doi.org/10.1038/nm.3643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell. 2017;169:483–96 e413 [PMID: PMC5510744]. https://doi.org/10.1016/j.cell.2017.03.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs E. Skin stem cells: rising to the surface. J Cell Biol. 2008;180:273–84 [PMID: PMC2213592 DOI. https://doi.org/10.1083/jcb.200708185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62 [PMID: 22940863]. https://doi.org/10.1038/nature11393.
Article
CAS
PubMed
Google Scholar
Sada A, Jacob F, Leung E, Wang S, White BS, Shalloway D, Tumbar T. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat Cell Biol. 2016;18:619–31 [PMID: PMC4884151]. https://doi.org/10.1038/ncb3359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73:713–24 PMID: 8500165], http://www.ncbi.nlm.nih.gov/pubmed/8500165.
Article
CAS
PubMed
Google Scholar
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019;21:18–24 [PMID: PMC2424190]. https://doi.org/10.1038/s41556-018-0237-6.
Article
CAS
PubMed
Google Scholar
Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev. Mol Cell Biol. 2009;10:207–17 [PMID: PMC2760218 2,760,218]. https://doi.org/10.1038/nrm2636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Danes A, Hannezo E, Larsimont JC, Liagre M, Youssef KK, Simons BD, Blanpain C. Defining the clonal dynamics leading to mouse skin tumor initiation. Nature. 2016;536:298–303 [PMID: PMC5068560]. https://doi.org/10.1038/nature19069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48 [PMID: 15339667]. https://doi.org/10.1016/j.cell.2004.08.012.
Article
CAS
PubMed
Google Scholar
Liu Y, Lyle S, Yang Z, Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 2003;121:963–8 [PMID: 14708593]. https://doi.org/10.1046/j.1523-1747.2003.12600.x.
Article
CAS
PubMed
Google Scholar
Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012;150:136–50 [PMID: PMC3423199]. https://doi.org/10.1016/j.cell.2012.04.045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9 [PMID: 18849992]. https://doi.org/10.1038/ng.239.
Article
CAS
PubMed
Google Scholar
Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43 [PMID: PMC2877596]. https://doi.org/10.1016/j.stem.2008.05.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard JM, Nuguid JM, Ngole D, Nguyen H. Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development. 2014;141:3143–52 [PMID: PMC4197553]. https://doi.org/10.1242/dev.106989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development. 2003;130:5241–55 [PMID: 12954714]. https://doi.org/10.1242/dev.00703.
Article
CAS
PubMed
Google Scholar
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61 [PMID: 10966107], https://www.ncbi.nlm.nih.gov/pubmed/10966107.
Article
CAS
PubMed
Google Scholar
Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci U S A. 2005;102:14677–82 [PMID: PMC1253596]. https://doi.org/10.1073/pnas.0507250102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell. 2009;4:427–39 [PMID: PMC2698066]. https://doi.org/10.1016/j.stem.2009.04.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal gata6(+) cells and acquisition of stem cell properties. Nat Cell Biol. 2017;19:603–13 [PMID: 28504705]. https://doi.org/10.1038/ncb3532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126:597–609 [PMID: PMC2424190]. https://doi.org/10.1016/j.cell.2006.06.048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344:1242281 [PMID: PMC4523269]. https://doi.org/10.1126/science.1242281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–254 [PMID: 16288281]. https://doi.org/10.1038/nm1328.
Article
CAS
PubMed
Google Scholar
Doupe DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD, Jones PH. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science. 2012;337:1091–3 [PMID: PMC3527005]. https://doi.org/10.1126/science.1218835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63 [PMID: PMC2405920]. https://doi.org/10.1126/science.1092436.
Article
CAS
PubMed
Google Scholar
Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001;358:1067–8 [PMID: 11589942]. https://doi.org/10.1016/S0140-6736(01)06202-X.
Article
CAS
PubMed
Google Scholar
Mannik J, Alzayady K, Ghazizadeh S. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J Invest Dermatol. 2010;130:388–97 [PMID: PMC2879264]. https://doi.org/10.1038/jid.2009.244.
Article
CAS
PubMed
Google Scholar
Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72:548–57 [PMID: 15617565]. https://doi.org/10.1111/j.1432-0436.2004.07209008.x.
Article
PubMed
Google Scholar
Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature. 2013; 502: [PMID: PMC3895444]. https://doi.org/10.1038/nature12602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev. Mol Cell Biol. 2013;14:489–502 [PMID: 23860235]. https://doi.org/10.1038/nrm3625.
Article
CAS
PubMed
Google Scholar
Pastushenko I, Prieto-Torres L, Gilaberte Y, Blanpain C. Skin stem cells: at the frontier between the laboratory and clinical practice. Part 1: epidermal stem cells. Actas Dermosifiliogr. 2015;106:725–32 [PMID: 26189363]. https://doi.org/10.1016/j.ad.2015.05.008.
Article
CAS
PubMed
Google Scholar
Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437:275–80 [PMID: PMC1399371]. https://doi.org/10.1038/nature03922.
Article
PubMed
PubMed Central
Google Scholar
Roshan A, Murai K, Fowler J, Simons BD, Nikolaidou-Neokosmidou V J, ones PH. Human keratinocytes have two interconvertible modes of proliferation. Nat Cell Biol 2016; 18: 145–156 [PMID: PMC4872834] DOI: https://doi.org/10.1038/ncb3282
Article
PubMed
PubMed Central
Google Scholar
Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346:941–5 [PMID: 25414301]. https://doi.org/10.1126/science.1253836.
Article
CAS
PubMed
Google Scholar
Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascre G, Simons BD, Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun. 2017;8:14684 [PMID: PMC5339881]. https://doi.org/10.1038/ncomms14684.
Article
PubMed
PubMed Central
Google Scholar
Park S, Gonzalez DG, Guirao B, Boucher JD, Cockburn K, Marsh ED, Mesa KR, Brown S, Rompolas P, Haberman AM, Bellaïche Y, Greco V. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat Cell Biol. 2017;19:407 [PMID: 28361941]. https://doi.org/10.1038/ncb3503.
Article
CAS
PubMed
Google Scholar
Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T, Hudson LG. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol. 2005;202:858–66 [PMID: 15389643]. https://doi.org/10.1002/jcp.20188.
Article
CAS
PubMed
Google Scholar
Haensel D, Dai X. Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev Dyn. 2018;247:473–80 [PMID: PMC5809211]. https://doi.org/10.1002/dvdy.24561.
Article
PubMed
Google Scholar
Singer AJ, Thode HC Jr, McClain SA. Development of a histomorphologic scale to quantify cutaneous scars after burns. Acad Emerg Med. 2000;7:1083–8 [PMID: 11015238], http://www.ncbi.nlm.nih.gov/pubmed/11015238.
Article
CAS
PubMed
Google Scholar
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70 [PMID: 12843410]. https://doi.org/10.1152/physrev.2003.83.3.835.
Article
CAS
PubMed
Google Scholar
Lau K, Paus R, Tiede S, Day P, Bayat A. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol. 2009;18:921–33 [PMID: 19719838]. https://doi.org/10.1111/j.1600-0625.2009.00942.x.
Article
CAS
PubMed
Google Scholar
Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018;29:556–68 [PMID: 29442539]. https://doi.org/10.1080/09537104.2018.1430357.
Article
CAS
PubMed
Google Scholar
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21 [PMID: 18480812]. https://doi.org/10.1038/nature07039.
Article
CAS
PubMed
Google Scholar
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–25 [PMID: 17299434]. https://doi.org/10.1038/sj.jid.5700701.
Article
CAS
PubMed
Google Scholar
Daley JM, Reichner JS, Mahoney EJ, Manfield L, Henry WL Jr, Mastrofrancesco B, Albina JE. Modulation of macrophage phenotype by soluble product(s) released from neutrophils. Journal of immunology. 2005;174:2265–72 [PMID: 15699161].
Article
CAS
Google Scholar
Profyris C, Tziotzios C, Do VI. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics part i. The molecular basis of scar formation. J Am Acad Dermatol. 2012;66:1–10; quiz 11–12 [PMID: 22177631]. https://doi.org/10.1016/j.jaad.2011.05.055.
Article
CAS
PubMed
Google Scholar
Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, Angel P. C-jun and junb antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell. 2000;103:745–55 [PMID: 11114331, http://www.ncbi.nlm.nih.gov/pubmed/11114331.
Article
CAS
PubMed
Google Scholar
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103–11 [PMID: PMC2119614, http://www.ncbi.nlm.nih.gov/pubmed/8314838.
Article
CAS
PubMed
Google Scholar
Garcin CL, Ansell DM. The battle of the bulge: re-evaluating hair follicle stem cells in wound repair. Exp Dermatol. 2017;26:101–4 [PMID: 27574799]. https://doi.org/10.1111/exd.13184.
Article
PubMed
Google Scholar
Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, Scaglione D, Reichelt J, Klausegger A, Kneisz D, Romano O, Secone Seconetti A, Contin R5 EE, Jurman I, Carulli S, Jacobsen F, Luecke T, Lehnhardt M, Fischer M, Kueckelhaus M, Quaglino D, Morgante M, Bicciato S, Bondanza S, DL M. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;327–332 [PMID: PMC6283270]:551. https://doi.org/10.1038/nature24487.
Article
CAS
Google Scholar
Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D, Fuchs E. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521:366–70 [PMID: PMC4482136]. https://doi.org/10.1038/nature14289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD, Califano A, Shen MM. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol. 2013;15:273–83 [PMID: PMC3743266]. https://doi.org/10.1038/ncb2697.
Article
CAS
Google Scholar
Quist SR, Eckardt M, Kriesche A, Gollnick HP. Expression of epidermal stem cell markers in skin and adnexal malignancies. Br J Dermatol. 2016;175:520–30 [PMID: 26914519]. https://doi.org/10.1111/bjd.14494.
Article
CAS
PubMed
Google Scholar
Kadaja M, Keyes BE, Lin M, Pasolli HA, Genander M, Polak L, Stokes N, Zheng D, Fuchs E. Sox9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev. 2014;28:328–41 [PMID: PMC3937512]. https://doi.org/10.1101/gad.233247.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito M, G. C. Is the hair follicle necessary for normal wound healing? J Invest Dermatol 2008; 128: 1059–1061 [PMID: PMC3147170] DOI: https://doi.org/10.1038/jid.2008.86
Article
CAS
PubMed
Google Scholar
Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385–9 [PMID: 20223988]. https://doi.org/10.1126/science.1184733.
Article
CAS
PubMed
Google Scholar
Frances D, Niemann C. Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev Biol. 2012;363:138–46 [PMID: 22227295]. https://doi.org/10.1016/j.ydbio.2011.12.028.
Article
CAS
PubMed
Google Scholar
Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P, Niemann C. Tcf/lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO J. 2011;30:3004–18 [PMID: PMC3160179]. https://doi.org/10.1038/emboj.2011.199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rittie L, Sachs DL, Orringer JS, Voorhees JJ, Fisher GJ. Eccrine sweat glands are major contributors to reepithelialization of human wounds. Am J Pathol. 2013;182:163–71 [PMID: PMC3538027]. https://doi.org/10.1016/j.ajpath.2012.09.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell. 2011;8:552–65 [PMID: PMC3089905]. https://doi.org/10.1016/j.stem.2011.02.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells. 2015;7:992–8 [PMID: PMC4550631]. https://doi.org/10.4252/wjsc.v7.i7.992.
Article
PubMed
PubMed Central
Google Scholar
Van Camp JK, Beckers S, Zegers D, Van Hul W. Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 2014;10:207–29 [PMID: 24323281]. https://doi.org/10.1007/s12015-013-9486-8.
Article
CAS
Google Scholar
Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99 [PMID: 28575679]. https://doi.org/10.1016/j.cell.2017.05.016.
Article
CAS
PubMed
Google Scholar
Wu X, Shen QT, Oristian DS, Lu CP, Zheng Q, Wang HW. Skin stem cells orchestrate directional migration by regulating microtubule-acf7 connections through gsk3β. Cell. 2011;144:341–52 [PMID: PMC3050560]. https://doi.org/10.1016/j.cell.2010.12.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J. Wnt and notch signaling pathway involved in wound healing by targeting c-myc and hes1 separately. Stem Cell Res Ther. 2015;6:120 [PMID: PMC4501079]. https://doi.org/10.1186/s13287-015-0103-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mardaryev AN, Meier N, Poterlowicz K, Sharov AA, Sharova TY, Ahmed MI, Rapisarda V, Lewis C, Fessing MY, Ruenger TM, Bhawan J, Werner S, Paus R, Botchkarev VA. Lhx2 differentially regulates sox9, tcf4 and lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development. 2011;138:4843–52 [PMID: PMC4067271]. https://doi.org/10.1242/dev.070284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E. Tcf3 and tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet. 2009;41:1068–75 [PMID: PMC2792754]. https://doi.org/10.1038/ng.431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang R, Wang J, Zhou Z, Qi S, Ruan S, Lin Z, Xin Q, Lin Y, Chen X, Xie J. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Dev Biol. 2019;445:271–9 [PMID: 30476483]. https://doi.org/10.1016/j.ydbio.2018.11.015.
Article
CAS
PubMed
Google Scholar
Longmate WM, Dipersio CM. Integrin regulation of epidermal functions in wounds. Adv Wound Care (New Rochelle). 2014;3:229–46 [PMID: PMC3955963]. https://doi.org/10.1089/wound.2013.0516.
Article
Google Scholar
Li H, Chang L, Du WW, Gupta S, Khorshidi A, Sefton M, Yang BB. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol Ther. 2014;22:1839–50 [PMID: PMC4428398]. https://doi.org/10.1038/mt.2014.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivasankar S. Tuning the kinetics of cadherin adhesion. J Invest Dermatol. 2013;133:2318–23 [PMID: PMC3773255]. https://doi.org/10.1038/jid.2013.229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G. Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking ctip2 in epidermis. PloS one. 2012;7:e29999 [PMID: PMC3283611]. https://doi.org/10.1371/journal.pone.0029999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD, Tomic-Canic M. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167:59–69 [PMID: PMC1603435], http://www.ncbi.nlm.nih.gov/pubmed/15972952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel GK, Wilson CH, Harding KG, Finlay AY, Bowden PE. Numerous keratinocyte subtypes involved in wound re-epithelialization. J Invest Dermatol. 2006;126:497–502 [PMID: 16374449]. https://doi.org/10.1038/sj.jid.5700101.
Article
CAS
PubMed
Google Scholar
Botchkarev VA, Flores ER. P53/p63/p73 in the epidermis in health and disease. Cold Spring Harb Perspect Med. 2014;4: [PMID: PMC4109579]. https://doi.org/10.1101/cshperspect.a015248.
Article
PubMed
PubMed Central
Google Scholar
Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. Dnmt1 maintains progenitor function in self-renewing somatic tissue. Nature. 2010;463:563–7 [PMID: PMC3050546]. https://doi.org/10.1038/nature08683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Jiang TX, Hughes MW, Wu P, Yu J, Widelitz RB, Fan G, Chuong CM. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J Invest Dermatol. 2012;132:2681–90 [PMID: PMC3465630]. https://doi.org/10.1038/jid.2012.206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulder KW, Wang X, Escriu C, Ito Y, Schwarz RF, Gillis J, Sirokmany G, Donati G, Uribe-Lewis S, Pavlidis P, Murrell A, Markowetz F, Watt FM. Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol. 2012;14:753–63 [PMID: 22729083]. https://doi.org/10.1038/ncb2520.
Article
CAS
PubMed
Google Scholar
Zhang S, Duan E. Epigenetic regulations on skin wound healing: implications from current researches. Ann Transl Med. 2015;3:227 [PMID: PMC4598448]. https://doi.org/10.3978/j.issn.2305-5839.2015.07.12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen. 2014;22:305–12 [PMID: 24844330]. https://doi.org/10.1111/wrr.12160.
Article
PubMed
Google Scholar
Li H, Cui D, Wu S, Xu X, Ye L, Zhou X, Wan M, Zheng L. Epigenetic regulation of gene expression in epithelial stem cells fate. Curr Stem Cell Res Ther. 2018;13:46–51 [PMID: 29141553]. https://doi.org/10.2174/1574888X12666171115123241.
Article
CAS
PubMed
Google Scholar
Shen Q, Jin H, Wang X. Epidermal stem cells and their epigenetic regulation. Int J Mol Sci. 2013;14:17861–80 [PMID: PMC3794757]. https://doi.org/10.3390/ijms140917861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thandavarayan RA, Garikipati VN, Joladarashi D, Suresh Babu S, Jeyabal P, Verma SK, Mackie AR, Khan M, Arumugam S, Watanabe K, Kishore R, Krishnamurthy P. Sirtuin-6 deficiency exacerbates diabetes-induced impairment of wound healing. Exp Dermatol. 2015;24:773–8 [PMID: PMC4583793]. https://doi.org/10.1111/exd.12762.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spallotta F, Cencioni C, Straino S, Sbardella G, Castellano S, Capogrossi MC, Martelli F, Gaetano C. Enhancement of lysine acetylation accelerates wound repair. Commun Integr Biol. 2013;6:e25466 [PMID: PMC3829946]. https://doi.org/10.4161/cib.25466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi R, Fuchs E. MicroRNAs and their roles in mammalian stem cells. J Cell Sci. 2011;124:1775–83 [PMID: PMC3096054]. https://doi.org/10.1242/jcs.069104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan TB, Robert LC, Teebagy PA, Morgan SE, Beatty EW, Cicuto BJ, Nowd PK, Rieger-Christ KM, Bryan DJ. Spatiotemporal microRNA profile in peripheral nerve regeneration: Mir-138 targets vimentin and inhibits Schwann cell migration and proliferation. Neural Regen Res. 2018;13:1253–62 [PMID: PMC6065231]. https://doi.org/10.4103/1673-5374.235073.
Article
PubMed
PubMed Central
Google Scholar
Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–9 [PMID: PMC4346711]. https://doi.org/10.1038/nature06642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Z, Shu B, Xu Y, Liu J, Wang P, Chen L, Zhao J, Liu X, Qi S, Xiong K, Wu J, Xie J. MicroRNA-203 modulates wound healing and scar formation via suppressing hes1 expression in epidermal stem cells. Cell Physiol Biochem. 2018;49:2333–47 [PMID: 30261495]. https://doi.org/10.1159/000493834.
Article
CAS
PubMed
Google Scholar
Toyokuni S, Jiang L, Wang S, Hirao A, Wada T, Soh C, Toyama K, Kawada A. Aging rather than sun exposure is a major determining factor for the density of mir-125b-positive epidermal stem cells in human skin. Pathol Int. 2015;65:415–9 [PMID: 26081223]. https://doi.org/10.1111/pin.12320.
Article
CAS
PubMed
Google Scholar
Nagosa S, Leesch F, Putin D, Bhattacharya S, Altshuler A, Serror L, Amitai-Lange A, Nasser W, Aberdam E, Rouleau M, Tattikota SG, Poy MN, Aberdam D, Shalom-Feuerstein R. MicroRNA-184 induces a commitment switch to epidermal differentiation. Stem Cell Reports. 2017;9:1991–2004 [PMID: PMC5785777]. https://doi.org/10.1016/j.stemcr.2017.10.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull. 2016;6:293–9 [PMID: 5071792]. https://doi.org/10.15171/apb.2016.041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, Rose D, Boltze J. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int. 2018;25:4623615 [PMID: PMC5889868]. https://doi.org/10.1155/2018/4623615.
Article
Google Scholar
Hickerson WL, Remmers AE, Recker D. Twenty-five years’ experience and beyond with cultured epidermal autografts (CEA) for coverage of large burn wounds in adult and pediatric patients, 1989–2015. J Burn Care Res. 2018: [PMID: 30500931]. https://doi.org/10.1093/jbcr/iry061.
Article
Google Scholar
James SE, Booth S, Dheansa B, Mann DJ, Reid MJ, Shevchenko RV, PM. G. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients. Burns 2010; 36: e10–e20 [PMID: 19303712] DOI: https://doi.org/10.1016/j.burns.2008.11.011
Article
PubMed
Google Scholar
Ortega-Zilic N, Hunziker T, Läuchli S, Mayer DO, Huber C, Baumann Conzett K, Sippel K, Borradori L, French LE, Hafner J. Epidex® Swiss field trial 2004–2008. Dermatology. 2010;221:365–72 [PMID: 21071921]. https://doi.org/10.1159/000321333.
Article
PubMed
Google Scholar
Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70:1588–98 [PMID: 11152220], http://www.ncbi.nlm.nih.gov/pubmed/11152220.
Article
CAS
PubMed
Google Scholar
Yang RH, Qi SH, Shu B, Ruan SB, Lin ZP, Lin Y, Shen R, Zhang FG, Chen XD, Xie JL. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the notch signalling pathway. Biosci Rep. 2016;36: [PMID: PMC4974596]. https://doi.org/10.1042/BSR20160034.
Article
PubMed
PubMed Central
Google Scholar
Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol. 2019;843:307–15 [PMID: 30537490]. https://doi.org/10.1016/j.ejphar.2018.12.012.
Article
CAS
PubMed
Google Scholar
Ho CH, Lan CW, Liao CY, Hung SC, Li HY, Sung YJ. Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. J Chin Med Assoc. 2018;81:268–76 [PMID: 28882732]. https://doi.org/10.1016/j.jcma.2017.03.013.
Article
PubMed
Google Scholar
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther. 2016;16:859–71 [PMID: 5280876]. https://doi.org/10.1517/14712598.2016.1170804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodarzi P, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Mohamadi-Jahani F, Ranjbaran N, Payab M, Falahzadeh K, Mousavi M, Arjmand B. Mesenchymal stem cells-derived exosomes for wound regeneration. Adv Exp Med Biol. 2018;1119:119–31 [PMID: 30051320]. https://doi.org/10.1007/5584_2018_251.
Article
PubMed
Google Scholar
Kim YJ, Yoo SM, Park HH, Lim HJ, Kim YL, Lee S, Seo KW, Kang KS. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun. 2017;493:1102–8 [PMID: 28919421]. https://doi.org/10.1016/j.bbrc.2017.09.05.
Article
CAS
PubMed
Google Scholar
Wurzer P, Keil H, Branski LK, Parvizi D, Clayton RP, Finnerty CC, Herndon DN, Kamolz LP. The use of skin substitutes and burn care-a survey. J Surg Res. 2016;201:293–8 [PMID: 27020810]. https://doi.org/10.1016/j.jss.2015.10.048.
Article
PubMed
Google Scholar
Nicholas MN, Yeung J. Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg. 2017;21:23–30 [PMID: 27530398]. https://doi.org/10.1177/1203475416664037.
Article
PubMed
Google Scholar
Chester DL, Balderson DS, Papini RP. A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil. 2004;25:266–75 [PMID: 15273468], http://www.ncbi.nlm.nih.gov/pubmed/15273468.
Article
CAS
PubMed
Google Scholar
Jackson CJ, Tonseth KA, Utheim TP. Cultured epidermal stem cells in regenerative medicine. Stem Cell Res Ther. 2017;8:155 [PMID: PMC5496160]. https://doi.org/10.1186/s13287-017-0587-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llames SG, Del Rio M, Larcher F, García E, García M, Escamez MJ, Jorcano JL, Holguín P, Meana A. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation. 2004;77:350–5 [PMID: 14966407]. https://doi.org/10.1097/01.TP.0000112381.80964.85.
Article
PubMed
Google Scholar
Lough D, Dai H, Yang M, Reichensperger J, Cox L, Harrison C, Neumeister MW. Stimulation of the follicular bulge lgr5+ and lgr6+ stem cells with the gut-derived human alpha defensin 5 results in decreased bacterial presence, enhanced wound healing, and hair growth from tissues devoid of adnexal structures. Plast Reconstr Surg. 2013;132:1159–71 [PMID: 24165598]. https://doi.org/10.1097/PRS.0b013e3182a48af6.
Article
CAS
PubMed
Google Scholar
Lough DM, Yang M, Blum A, Reichensperger JD, Cosenza NM, Wetter N, Cox LA, Harrison CE, Neumeister MW. Transplantation of the lgr6+ epithelial stem cell into full-thickness cutaneous wounds results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analytes. Plast Reconstr Surg. 2014;133:579–90 [PMID: 24572851]. https://doi.org/10.1097/PRS.0000000000000075.
Article
CAS
PubMed
Google Scholar
Jones JE, Nelson EA, Al-Hity A. Skin grafting for venous leg ulcers. Cochrane Database Syst Rev. 2013;31:CD001737 [PMID: 23440784]. https://doi.org/10.1002/14651858.CD001737.pub4.
Article
Google Scholar
Stojadinovic O, Pastar I, Nusbaum AG, Vukelic S, Krzyzanowska A, Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen. 2014;22:220–7 [PMID: PMC4329920]. https://doi.org/10.1111/wrr.12142.
Article
PubMed
PubMed Central
Google Scholar
Bauer JW, Koller J, Murauer EM, De Rosa L, Enzo E, Carulli S, Bondanza S, Recchia A, Muss W, Diem A, Mayr E, Schlager P, Gratz IK, Pellegrini G, De Luca M. Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells. J Invest Dermatol. 2017;137:778–81 [PMID: 27840234]. https://doi.org/10.1016/j.jid.2016.10.038.
Article
CAS
PubMed
Google Scholar
Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells Int. 2002;20:21–31 [PMID: 11796919]. https://doi.org/10.1634/stemcells.20-1-21.
Article
Google Scholar
Gao N, Wang Z, Huang B, Ge J, Lu R, Zhang K, Fan Z, Lu L, Peng Z, G. C. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro. Sci China C Life Sci 2007; 50: 101–110 [PMID: 17393090] DOI: https://doi.org/10.1007/s11427-007-0006-4
Article
CAS
PubMed
Google Scholar
Rogovaya OS, Fayzulin AK, Vasiliev AV, Kononov AV, Terskikh VV. Reconstruction of rabbit urethral epithelium with skin keratinocytes. Acta Naturae. 2015;7:70–7 [PMID: 25927003] http://www.ncbi.nlm.nih.gov/pubmed/25927003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M. P63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61 [PMID: PMC30623]. https://doi.org/10.1073/pnas.061032098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, Cai H, Luo J, Zhang M, Zhang M, Yang Y, Li G, Li H, Jiang W, Yeh E, Lin J, Pei M, Zhu J, Cao G, Zhang L, Yu B, Chen S, Fu XD, Liu Y, Zhang K. Wnt7a and pax6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358–61 [PMID: PMC4610745]. https://doi.org/10.1038/nature13465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerra L, Capurro S, Melchi F, Primavera G, Bondanza S, Cancedda R, Luci A, De Luca M, Pellegrini G. Treatment of “stable” vitiligo by Timedsurgery and transplantation of cultured epidermal autografts. Arch Dermatol. 2000;136:1380–9 [PMID: 11074702], http://www.ncbi.nlm.nih.gov/pubmed/11074702.
Article
CAS
PubMed
Google Scholar
Matsuzaki K, Kumagai N. Treatment of vitiligo with autologous cultured keratinocytes in 27 cases. Eur J Plast Surg. 2013;36:651–6 [PMID: PMC3771432]. https://doi.org/10.1007/s00238-013-0875-7.
Article
PubMed
PubMed Central
Google Scholar
Larcher F, Del Rio M. Innovative therapeutic strategies for recessive dystrophic epidermolysis bullosa. Actas Dermosifiliogr. 2015;106:376–82 [PMID: 25796272]. https://doi.org/10.1016/j.ad.2015.01.007.
Article
CAS
PubMed
Google Scholar
Droz-Georget Lathion S, Rochat A, Knott G, Recchia A, Martinet D, Benmohammed S, Grasset N, Zaffalon A, Besuchet Schmutz N, Savioz-Dayer E, Beckmann JS, Rougemont J, Mavilio F, Barrandon Y. A single epidermal stem cell strategy for safe ex vivo gene therapy. EMBO Mol Med. 2015;7:380–93 [PMID: PMC4403041]. https://doi.org/10.15252/emmm.201404353.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, Giannetti A, De Santis G, Recchia A, Pellegrini G, De Luca M. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports. 2014;2:1–8 [PMID: PMC3916757]. https://doi.org/10.1016/j.stemcr.2013.11.001.
Article
CAS
PubMed
Google Scholar
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62:216–25 [PMID: 26045256]. https://doi.org/10.1159/000381877.
Article
CAS
PubMed
Google Scholar
Kohane DS, Langer R. Polymeric biomaterials in tissue engineering. Pediatr Res. 2008;63:487–91 [PMID: 18427292]. https://doi.org/10.1203/01.pdr.0000305937.26105.e7.
Article
CAS
PubMed
Google Scholar
Stoppel WL, Ghezzi CE, McNamara SL, Black LD 3rd, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2015;43:657–80 [PMID: 25537688]. https://doi.org/10.1007/s10439-014-1206-2.
Article
PubMed
Google Scholar
Rabotyagova OS, Cebe P, Kaplan DL. Protein-based block copolymers. Biomacromolecules. 2011;12:269–89 [PMID: PMC3071546]. https://doi.org/10.1021/bm100928x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep. 2008;62:125–55 [PMID: PMC2575411]. https://doi.org/10.1016/j.mser.2008.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dash BC, Xu Z, Lin L, Koo A, Ndon S, Berthiaume F, Dardik A, Hsia H. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering (Basel) 2018; 5: [PMID: PMC5874889]. https://doi.org/10.3390/bioengineering5010023.
Article
PubMed Central
Google Scholar
Perez-Diaz MA, Silva-Bermudez P, Jimenez-Lopez B, Martinez-Lopez V, Melgarejo-Ramirez Y, Brena-Molina A, Ibarra C, Baeza I, Martinez-Pardo ME, Reyes-Frias ML, Marquez-Gutierrez E, Velasquillo C, Martinez-Castanon G, Martinez-Gutierrez F, Sanchez-Sanchez R. Silver-pig skin nanocomposites and mesenchymal stem cells: suitable antibiofilm cellular dressings for wound healing. J Nanobiotechnol. 2018;16:2 [PMID: PMC5761131]. https://doi.org/10.1186/s12951-017-0331-0.
Article
CAS
Google Scholar
Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999;68:868–79 [PMID: 10515389], http://www.ncbi.nlm.nih.gov/pubmed/10515389.
Article
CAS
PubMed
Google Scholar
Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, Wearda T, Muhonen E, McArdle A, Tevlin R, Atashroo DA, Senarath-Yapa K, Lorenz HP, Gurtner GC, Longaker MT. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg. 2015;135:907–17 [PMID: 25719706]. https://doi.org/10.1097/PRS.0000000000000972.
Article
CAS
PubMed
Google Scholar
De Luca M, Pellegrini G, Green H. Regeneration of squamous epithelia from stem cells of cultured grafts. Regen Med. 2006;1:45–57 [PMID: 17465819]. https://doi.org/10.2217/17460751.1.1.45.
Article
PubMed
Google Scholar
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85 [PMID: 25093879]. https://doi.org/10.1038/nbt.2958.
Article
CAS
PubMed
Google Scholar
Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current advancements and strategies in tissue engineering for wound healing: a comprehensive review. Adv Wound Care (New Rochelle). 2017;6:191–209 [PMID: PMC5467128]. https://doi.org/10.1089/wound.2016.0723.
Article
Google Scholar
Yang RH, Qi SH, Ruan SB, Lin ZP, Lin Y, Zhang FG, Chen XD, Xie JL. Egfl7-overexpressing epidermal stem cells promotes fibroblast proliferation and migration via mediating cell adhesion and strengthening cytoskeleton. Mol Cell Biochem. 2016;423:1–8 [PMID: 27766530]. https://doi.org/10.1007/s11010-016-2812-0.
Article
CAS
PubMed
Google Scholar
Yang R, Wang J, Zhou Z, Qi S, Ruan S, Lin Z, Xin Q, Lin Y, Chen X, Xie J. Curcumin promotes burn wound healing in mice by upregulating caveolin-1 in epidermal stem cells. Phytother Res. 2019;33:422–30 [PMID: 30461085]. https://doi.org/10.1002/ptr.6238.
Article
CAS
PubMed
Google Scholar
Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7:231 [PMID: PMC4971062]. https://doi.org/10.3389/fphar.2016.00231.
Article
PubMed
PubMed Central
Google Scholar