Wang AL, Knight DK, Vu TT, Mehta MC. Retinitis pigmentosa: review of current treatment. Int Ophthalmol Clin. 2019;59:263–80. https://doi.org/10.1097/IIO.0000000000000256.
Article
CAS
PubMed
Google Scholar
Zhang Q. Retinitis pigmentosa. Asia-Pac J Ophthalmol. 2016:265–71. https://doi.org/10.1097/apo.0000000000000227.
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006:1795–809. https://doi.org/10.1016/s0140-6736(06)69740-7.
Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40 4.
Article
Google Scholar
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81. https://doi.org/10.1152/physrev.00021.2004.
Article
CAS
PubMed
Google Scholar
Cacares PS, Boulan ER. Retinal pigment epithelium polarity in health and blinding diseases. Curr Opin Cell Biol. 2020;62:37–45.
Article
Google Scholar
Fuhrmann S, Zou CJ, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2014;123:141–50. https://doi.org/10.1016/j.exer.2013.09.003.
Article
CAS
PubMed
Google Scholar
Dalvi S, Galloway CA, Singh R. Pluripotent stem cells to model degenerative retinal diseases: the RPE perspective. Bharti K.(ed.) Pluripotent stem cells in eye disease therapy, advances in experimental medicine and biology 2019;1186, doi.org/10.1007/978-3-030-28471-8_Springer Nature Switzerland.
Ali MU, MSU R, Cao J, Yuan PX. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech. 2017;7(4):251 2.
Article
Google Scholar
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest. 2018;128(6):2177–88. https://doi.org/10.1172/JCI120429.
Article
PubMed
PubMed Central
Google Scholar
Friberg TR. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol. 1985;100(4):621–2.
Article
CAS
PubMed
Google Scholar
Birch DG, Anderson JL, Fish GE. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology. 1999;106:258–68.
Article
CAS
PubMed
Google Scholar
Liu X, Zhang Y, He Y, Zhao J, Su G. Progress in histopathologic and pathogenetic research in a retinitis pigmentosa model. Histol Histopathol. 2015;30(7):771–9.
CAS
PubMed
Google Scholar
Rodríguez-Muñoz A, Aller E, Jaijo T, González-García E, Cabrera-Peset A, et al. Expanding the clinical and molecular heterogeneity of nonsyndromic inherited retinal dystrophies. J Mol Diagn. 2020;22(4):532–43. https://doi.org/10.1016/j.jmoldx.2020.01.003.
Article
CAS
PubMed
Google Scholar
Tsang SH, Sharma T. Retinitis pigmentosa (non-syndromic). Atlas Inherit Retin Dis. 2018:125–30. https://doi.org/10.1007/978-3-319-95046-4_25.
Takahashi VKL, Xu CL, Takiuti JT, Apatoff MBL, Duong JK, Mahajan VB, Tsang SH. Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa. Orphanet J Rare Dis. 2019;14:187. https://doi.org/10.1186/s13023-019-1163-9.
Article
PubMed
PubMed Central
Google Scholar
Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: usher syndrome. Atlas Inherit Retin Dis. 2018:167–70. https://doi.org/10.1007/978-3-319-95046-4_32.
Takahashi VKL, Takiuti JT, Carvalho-Jr JRL, Xu CL, Duong JK, Mahajan VB, Tsang SH. Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2019;257:725–31. https://doi.org/10.1007/s00417-018-04234-6 Epub 2019 Jan 11.
Article
PubMed
Google Scholar
Tsang SH, Sharma T. Autosomal dominant retinitis pigmentosa. Atlas Inherit Retin Dis. 2018:69–77. https://doi.org/10.1007/978-3-319-95046-4_15.
Cai CX, Locke KG, Ramachandran R, Birch DG, Hood DC. A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and x-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;23(55):7417–22. https://doi.org/10.1167/iovs.14-15013.
Article
Google Scholar
Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci. 2007;48:1298–304.
Article
PubMed
Google Scholar
Tsang SH, Sharma T. X-linked retinitis pigmentosa. Atlas Inherit Retin Dis. 2018:31–5. https://doi.org/10.1007/978-3-319-95046-4_8.
Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa. Int J Mol Sci. 2019;20(10):2542. https://doi.org/10.3390/ijms20102542.
Article
CAS
PubMed Central
Google Scholar
Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2015;16(1):7–14. https://doi.org/10.1517/14712598.2016.1093110.
Article
CAS
PubMed
Google Scholar
Terrell D, Comander J. Current stem-cell approaches for the treatment of inherited retinal degenerations. Semin Ophthalmol. 2019:1–6. https://doi.org/10.1080/08820538.2019.1620808.
Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834–49. https://doi.org/10.1016/j.stem.2018.05.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leow SN, Luu CD, HairulNizam MH, Mok PL, Ruhaslizan R, Wong HS, et al. Safety and efficacy of human Wharton's jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS One. 2015;10(6):e0128973. https://doi.org/10.1371/journal.pone.0128973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem cell sources and their potential for the treatment of retinal degenerations. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFd1–9. https://doi.org/10.1167/iovs.16-19127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garg A, Yang J, Lee W, Tsang SH. Stem cell therapies in retinal disorders. Cells. 2017;6(1). doi: https://doi.org/10.3390/cells6010004.
Mohamed EM, Abdelrahman SA, Hussein S, Shalaby SM, Mosaad H, Awad AM. Effect of human umbilical cord blood mesenchymal stem cells administered by intravenous or intravitreal routes on cryo-induced retinal injury. IUBMB Life. 2017;69(3):188–201. https://doi.org/10.1002/iub.1608.
Article
CAS
PubMed
Google Scholar
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65. https://doi.org/10.1016/j.preteyeres.2016.10.002.
Article
CAS
PubMed
Google Scholar
Aladdad AM, Kador KE. Adult stem cells, tools for repairing the retina. Curr Ophthalmol Rep. 2019. https://doi.org/10.1007/s40135-019-00195-z.
Lund RD, Wang S, Lu B. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25:602–11.
Article
CAS
PubMed
Google Scholar
Rivero JEM, Nicolás FMN, Bernal DG, et al. Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of antiinflammatory and neurotrophic factors. Sci Rep. 2018;8:16299. https://doi.org/10.1038/s41598-018-34527-z.
Article
CAS
Google Scholar
Ruiz FL, Romero CG, Bernal GD, et al. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen Res. 2019;14(11):1851–7. https://doi.org/10.4103/1673-5374.259601.
Article
Google Scholar
Ji S, Lin S, Chen J, Huang X, Wei CC, Li Z, Tang S. Neuroprotection of transplanting human umbilical cord mesenchymal stem cells in a microbead induced ocular hypertension rat model. Curr Eye Res. 2018. https://doi.org/10.1080/02713683.2018.1440604.
Choi SW, Kim JJ, Seo MS, Park SB, Shin TH, et al. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells. J Vet Sci. 2017;18(1):59–65. https://doi.org/10.4142/jvs.2017.18.1.59.
Article
PubMed
PubMed Central
Google Scholar
Park SS. Cell therapy applications for retinal vascular diseases: diabetic retinopathy and retinal vein occlusion. Invest Ophthalmol Vis Sci. 2016;57:ORSFj1–ORSFj10. https://doi.org/10.1167/iovs.15-17594.
Article
CAS
PubMed
Google Scholar
Zhang W, Wang Y, Kong J, Dong M, Duan H, Chen S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep. 2017;7:408. https://doi.org/10.1038/s41598-017-00298-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pakuluk AC, Marycz K. A promising tool in retina regeneration: current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications. Stem Cell Rev Rep. 2017;13:598–602. https://doi.org/10.1007/s12015-017-9750-4.
Article
Google Scholar
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther. 2016;7:42. https://doi.org/10.1186/s13287-016-0299-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016;7(1). https://doi.org/10.1186/s13287-016-0432-y.
Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget. 2016;7(30):46913–23. https://doi.org/10.18632/oncotarget.10442.
Article
PubMed
PubMed Central
Google Scholar
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology. 2018;223(12):729–43. https://doi.org/10.1016/j.imbio.2018.01.001.
Article
CAS
PubMed
Google Scholar
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther. 2017;17(9):1113–26. https://doi.org/10.1080/14712598.2017.1346079.
Article
CAS
PubMed
Google Scholar
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020;11(1):25. https://doi.org/10.1186/s13287-020-1549-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B. Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res. 2016;55:206–45. https://doi.org/10.1016/j.preteyeres.2016.08.001.
Article
PubMed
Google Scholar
El-Asrag ME, Sergouniotis PI, McKibbin M, Plagnol V, Sheridan E, et al. Biallelic mutations in the autophagy regulator DRAM2 cause retinal dystrophy with early macular involvement. Am J Hum Genet. 2015;96(6):948–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Julian JL, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120(2):237–48.
Article
Google Scholar
Lei L, Tzekov R, Li H, McDowell J, Gao G, et al. Inhibition or stimulation of autophagy affects early formation of lipofuscin-like autofluorescence in the retinal pigment epithelium cell. Int J Mol Sci. 2017;18(4):728. https://doi.org/10.3390/ijms18040728.
Article
CAS
PubMed Central
Google Scholar
Collins MK, Perkins GR, Rodriguez-Tarduchy G, Nieto MA, López-Rivas A. Growth factors as survival factors: regulation of apoptosis. BioEssays. 1994;16(2):133–138 56.
Article
CAS
PubMed
Google Scholar
Marigo V. Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration. Cell Cycle. 2007;6(6):652–5.
Article
CAS
PubMed
Google Scholar
Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med. 2018;13(5):595–610. https://doi.org/10.2217/rme-2018-0019.
Article
CAS
PubMed
Google Scholar
Wysocka AM, Kot M, Sułkowski M, Badyra B, Majka M. Molecular and functional verification of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) Pluripotency. Int J Mol Sci. 2019;20:1807. https://doi.org/10.3390/ijms20081807.
Article
CAS
Google Scholar
Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep. 2017;7(1):4323. https://doi.org/10.1038/s41598-017-04559-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23. https://doi.org/10.1038/mt.2015.44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ophelders DR, Wolfs TG, Jellema RK, Zwanenburg A, Andriessen P, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med. 2016;5(6):754–63. https://doi.org/10.5966/sctm.2015-0197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles: a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Li P, Tian Y. Human umbilical cord mesenchymal stem cells: subpopulations and their difference in cell biology and effects on retinal degeneration in RCS rats. Curr Mol Med. 2017;17:6.
Google Scholar
Wu M, Zhang R, Zou Q, Chen Y, Zhou M, et al. Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep. 2018;8:5014. https://doi.org/10.1038/s41598-018-23396-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karahuseyınoglu S, Çınar Ö, Kılıç E, Kara F, Akay GG, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25:319–31.
Article
PubMed
Google Scholar
Daftarian N, Kiani S, Zahabi A. Regenerative therapy for retinal disorders. J Ophthalmic Vis Res. 2010;5(4):250–64.
PubMed
PubMed Central
Google Scholar
Langhe R, Pearson RA. Rebuilding the retina: prospects for Müller glial-mediated self-repair. Curr Eye Res. 2019. https://doi.org/10.1080/02713683.2019.1669665.
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol. 2015;13:294–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Hopkins JJ, Heier JS, Birch DG, Halperin LS, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci U S A. 2011;108(15):6241–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arslan U, Özmert E, Demirel S, Örnek F, Şermet F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol. 2018;256(5):893–908. https://doi.org/10.1007/s00417-018-3953-5.
Article
PubMed
Google Scholar
Arslan U, Özmert E. Management of retinitis pigmentosa via platelet-rich plasma or combination with electromagnetic stimulation: retrospective analysis of 1-year results. Adv Ther. 2020;37(5):2390–412. https://doi.org/10.1007/s12325-020-01308-y.
Article
CAS
PubMed
Google Scholar
Li SK, Hao J. Transscleral passive and iontophoretic transport: theory and analysis. Expert Opin Drug Deliv. 2017;15(3):283–99. https://doi.org/10.1080/17425247.2018.1406918.
Article
CAS
PubMed
Google Scholar
Demetriades AM, Deering T, Liu H, et al. Transscleral delivery of antiangiogenic proteins. J Ocul Pharmacol Ther. 2008;24(1):70–9. https://doi.org/10.1089/jop.2007.0061.
Article
CAS
PubMed
Google Scholar
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019. https://doi.org/10.1016/j.drudis.2019.05.00.
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. Expert Rev Ophthalmol. 2017;12(1):69–81.
Article
CAS
PubMed
Google Scholar
Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–5. https://doi.org/10.1016/j.ophtha.2012.07.006.
Article
PubMed
Google Scholar
Giacalone JC, Andorf JL, Zhang Q, Burnight ER, Ochoa D, et al. Development of a molecularly stable gene therapy vector for the treatment of RPGR-associated X-linked retinitis pigmentosa. Hum Gene Ther. 2019;30(8):967–74. https://doi.org/10.1089/hum.2018.244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet. 2018;39(6):671–7. https://doi.org/10.1080/13816810.2018.1533027.
Article
CAS
PubMed
Google Scholar
Munder MC, Midtvedt D, Franzmann T, Nüske E, Otto O, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. Elife. 2016;5:e09347. https://doi.org/10.7554/eLife.09347.
Article
PubMed
PubMed Central
Google Scholar
Wong F, Kwok SY. The survival of cone photoreceptors in retinitis pigmentosa. JAMA Ophthalmol. 2016;134(3):249–250 11.
Article
PubMed
Google Scholar
Koenekoop RK. Why some photoreceptors die,while others remain dormant: lessons from RPE65 and LRAT associated retinal dystrophies. Ophthalmic Genet. 2011;32(2):126–128 9.
Article
PubMed
Google Scholar
Wang W, Lee SJ, Scott PA, Lu X, Emery D, et al. Two-step reactivation of dormant cones in retinitis pigmentosa. Cell Rep. 2016;15(2):372–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahel JA, Leveillard T, Picaud S, Dalkara D, Marazova K, et al. Functional rescue of cone photoreceptors in retinitis pigmentosa. Grafes Arch Clin Exp Ophthalmol. 2013;251:1669–1677 13.
Article
Google Scholar