Lyu FJ, Cheung KM, Zheng Z, Wang H, Sakai D, Leung VY. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol. 2019;15(2):102–12. https://doi.org/10.1038/s41584-018-0154-x.
Article
PubMed
Google Scholar
Silverman LI, Dulatova G, Tandeski T, Erickson IE, Lundell B, Toplon D, Wolff T, Howard A, Chintalacharuvu S, Foley KT. In vitro and in vivo evaluation of discogenic cells, an investigational cell therapy for disc degeneration. Spine J. 2020;20(1):138–49.
Hua J, Shen N, Wang J, Tao Y, Li F, Chen Q, Zhou X. Small molecule-based strategy promotes nucleus pulposus specific differentiation of adipose-derived Mesenchymal stem cells. Mol Cells. 2019;42(9):661–71. https://doi.org/10.14348/molcells.2019.0098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev. 2019;146:306–24. https://doi.org/10.1016/j.addr.2018.04.017.
Article
CAS
PubMed
Google Scholar
Ishiguro H, Kaito T, Yarimitsu S, Hashimoto K, Okada R, Kushioka J, Chijimatsu R, Takenaka S, Makino T, Sakai Y, Moriguchi Y, Otsuru S, Hart DA, Fujie H, Nakamura N, Yoshikawa H. Intervertebral disc regeneration with an adipose mesenchymal stem cell-derived tissue-engineered construct in a rat nucleotomy model. Acta Biomater. 2019;87:118–29. https://doi.org/10.1016/j.actbio.2019.01.050.
Article
CAS
PubMed
Google Scholar
Henriksson HB, Papadimitriou N, Hingert D, Baranto A, Lindahl A, Brisby H. The traceability of mesenchymal stromal cells after injection into degenerated discs in patients with low back pain. Stem Cells Dev. 2019;28(17):1203–11. https://doi.org/10.1089/scd.2019.0074.
Article
CAS
PubMed
Google Scholar
Huang YC, Leung VY, Lu WW, Luk KD. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 2013;13(3):352–62. https://doi.org/10.1016/j.spinee.2012.12.005.
Article
PubMed
Google Scholar
Chan SC, Gantenbein-Ritter B, Leung VY, Chan D, Cheung KM, Ito K. Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J. 2010;10(6):486–96. https://doi.org/10.1016/j.spinee.2009.12.019.
Article
PubMed
Google Scholar
Li H, Liang C, Tao Y, Zhou X, Li F, Chen G, Chen QX. Acidic pH conditions mimicking degenerative intervertebral discs impair the survival and biological behavior of human adipose-derived mesenchymal stem cells. Exp Biol Med (Maywood). 2012;237(7):845–52. https://doi.org/10.1258/ebm.2012.012009.
Article
CAS
Google Scholar
Sakai D, Grad S. Advancing the cellular and molecular therapy for intervertebral disc disease. Adv Drug Deliv Rev. 2015;84:159–71. https://doi.org/10.1016/j.addr.2014.06.009.
Article
CAS
PubMed
Google Scholar
Li H, Wang J, Li F, Chen G, Chen Q. The influence of hyperosmolarity in the intervertebral disc on the proliferation and chondrogenic differentiation of nucleus pulposus-derived mesenchymal stem cells. Cells Tissues Organs. 2018;205(3):178–88. https://doi.org/10.1159/000490760.
Article
CAS
PubMed
Google Scholar
Han B, Wang HC, Li H, Tao YQ, Liang CZ, Li FC, Chen G, Chen QX. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs. 2014;199(5–6):342–52. https://doi.org/10.1159/000369452.
Article
CAS
PubMed
Google Scholar
Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, Mobasheri R, Poletti FL, Hoyland JA, Mobasheri A. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015.
Article
CAS
PubMed
Google Scholar
Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol. 2010;222(1):23–32. https://doi.org/10.1002/jcp.21915.
Article
CAS
PubMed
Google Scholar
Souza LEB, Beckenkamp LR, Sobral LM, Fantacini DMC, Melo FUF, Borges JS, Leopoldino AM, Kashima S, Covas DT. Pre-culture in endothelial growth medium enhances the angiogenic properties of adipose-derived stem/stromal cells. Angiogenesis. 2018;21(1):15–22. https://doi.org/10.1007/s10456-017-9579-0.
Article
CAS
PubMed
Google Scholar
Watanabe J, Yamada M, Niibe K, Zhang M, Kondo T, Ishibashi M, Egusa H. Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials. 2018;185:25–38. https://doi.org/10.1016/j.biomaterials.2018.08.055.
Article
CAS
PubMed
Google Scholar
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Lin PC, Lin SZ. Targeting the pathway of GSK-3beta/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells. J Mol Cell Cardiol. 2017;104:17–30. https://doi.org/10.1016/j.yjmcc.2017.01.014.
Article
CAS
PubMed
Google Scholar
Linares GR, Chiu CT, Scheuing L, Leng Y, Liao HM, Maric D, Chuang DM. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Exp Neurol. 2016;281:81–92. https://doi.org/10.1016/j.expneurol.2016.04.003.
Article
CAS
PubMed
Google Scholar
Liu W, Li T, Yang C, Wang D, He G, Cheng M, Wang Q, Zhang X. Lithium-incorporated nanoporous coating formed by micro arc oxidation (MAO) on magnesium alloy with improved corrosion resistance, Angiogenesis and Osseointegration. J Biomed Nanotechnol. 2019;15(6):1172–84. https://doi.org/10.1166/jbn.2019.2767.
Article
CAS
PubMed
Google Scholar
Luo Y, Li D, Zhao J, Yang Z, Kang P. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Biomed Mater Eng. 2018;29(6):699–721. https://doi.org/10.3233/BME-181018.
Article
CAS
PubMed
Google Scholar
Li D, Xie X, Yang Z, Wang C, Wei Z, Kang P. Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold. Biomater Sci. 2018;6(3):519–37. https://doi.org/10.1039/C7BM00975E.
Article
CAS
PubMed
Google Scholar
Zhu Z, Yin J, Guan J, Hu B, Niu X, Jin D, Wang Y, Zhang C. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3beta-dependent beta-catenin/Wnt pathway activation. FEBS J. 2014;281(23):5371–89. https://doi.org/10.1111/febs.13081.
Article
CAS
PubMed
Google Scholar
Kazemi H, Noori-Zadeh A, Darabi S, Rajaei F. Lithium prevents cell apoptosis through autophagy induction. Bratisl Lek Listy. 2018;119(4):234–9. https://doi.org/10.4149/BLL_2018_044.
Article
CAS
PubMed
Google Scholar
Liang C, Li H, Tao Y, Zhou X, Li F, Chen G, Chen Q. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J Transl Med. 2012;10(1):49. https://doi.org/10.1186/1479-5876-10-49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine. 2008;33(17):1843–9. https://doi.org/10.1097/BRS.0b013e31817b8f53.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Tao Y, Zhou X, Li H, Liang C, Li F, Chen QX. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment. Exp Biol Med. 2016;241(18):2104–11. https://doi.org/10.1177/1535370216662362.
Article
CAS
Google Scholar
Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329–36. https://doi.org/10.1002/adma.201300584.
Article
CAS
PubMed
Google Scholar
Gupta A, Rosenberger SF, Bowden GT. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis. 1999;20(11):2063–73. https://doi.org/10.1093/carcin/20.11.2063.
Article
CAS
PubMed
Google Scholar
Segel M, Neumann B, Hill MFE, Weber IP, Viscomi C, Zhao C, Young A, Agley CC, Thompson AJ, Gonzalez GA, Sharma A, Holmqvist S, Rowitch DH, Franze K, Franklin RJM, Chalut KJ. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 2019;573(7772):130–4. https://doi.org/10.1038/s41586-019-1484-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, Schultz PG. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717–21. https://doi.org/10.1126/science.1215157.
Article
CAS
PubMed
Google Scholar
Sulistio YA, Lee HK, Jung SJ, Heese K. Interleukin-6-mediated induced pluripotent stem cell (iPSC)-derived neural differentiation. Mol Neurobiol. 2018;55(4):3513–22. https://doi.org/10.1007/s12035-017-0594-3.
Article
CAS
PubMed
Google Scholar
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14. https://doi.org/10.1038/s41568-019-0149-1.
Article
CAS
PubMed
Google Scholar
Murphy MP. Metabolic control of ferroptosis in cancer. Nat Cell Biol. 2018;20(10):1104–5. https://doi.org/10.1038/s41556-018-0209-x.
Article
CAS
PubMed
Google Scholar
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arner ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409–422 e21.
Article
CAS
Google Scholar
Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18(9):951–75. https://doi.org/10.3727/096368909X471251.
Article
PubMed
Google Scholar
Liu B, Wu Q, Zhang S, Del Rosario A. Lithium use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporosis Int. 2019;30(2):257–66. https://doi.org/10.1007/s00198-018-4745-9.
Article
CAS
Google Scholar
Hiyama A, Sakai D, Arai F, Nakajima D, Yokoyama K, Mochida J. Effects of a glycogen synthase kinase-3beta inhibitor (LiCl) on c-myc protein in intervertebral disc cells. J Cell Biochem. 2011;112(10):2974–86. https://doi.org/10.1002/jcb.23217.
Article
CAS
PubMed
Google Scholar
Raup-Konsavage WM, Cooper TK, Yochum GS. A role for MYC in Lithium-stimulated repair of the colonic epithelium after DSS-induced damage in mice. Dig Dis Sci. 2016;61(2):410–22. https://doi.org/10.1007/s10620-015-3852-0.
Article
CAS
PubMed
Google Scholar
Eslaminejad MB, Karimi N, Shahhoseini M. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors. Histochem Cell Biol. 2013;140(6):623–33. https://doi.org/10.1007/s00418-013-1121-x.
Article
CAS
PubMed
Google Scholar
Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep. 2016;68(2):224–30. https://doi.org/10.1016/j.pharep.2015.09.005.
Article
CAS
PubMed
Google Scholar
Satija NK, Sharma D, Afrin F, Tripathi RP, Gangenahalli G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One. 2013;8(1):e55769. https://doi.org/10.1371/journal.pone.0055769.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng. 2004;10(3–4):393–401. https://doi.org/10.1089/107632704323061753.
Article
CAS
PubMed
Google Scholar
Zhou G, Meng S, Li YH, Ghebre YT, Cooke JP. Optimal ROS signaling is critical for nuclear reprogramming. Cell Rep. 2016;15(5):919–25. https://doi.org/10.1016/j.celrep.2016.03.084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan NM, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med. 2017;106:288–301. https://doi.org/10.1016/j.freeradbiomed.2017.02.041.
Article
CAS
PubMed
PubMed Central
Google Scholar