Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5. https://doi.org/10.1177/154405910208100806.
Article
CAS
PubMed
Google Scholar
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med. 2020;9:445–64.
Article
CAS
Google Scholar
Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806. https://doi.org/10.1177/0022034509340867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–23. https://doi.org/10.1007/s12015-016-9661-9.
Article
CAS
PubMed
Google Scholar
Xie Z, Shen Z, Zhan P, Yang J, Huang Q, Huang S, et al. Functional dental pulp regeneration: basic research and clinical translation. Int J Mol Sci. 2021;22:8991.
Article
CAS
Google Scholar
Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. Int J Mol Sci. 2019;20:1132.
Article
CAS
Google Scholar
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.
CAS
PubMed
Google Scholar
Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Inglés M, Gimeno-Mallench L, El Alami M, et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine. Int J Mol Sci. 2019;20:E1195.
Article
Google Scholar
Csete M. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci. 2005;1049:1–8. https://doi.org/10.1196/annals.1334.001.
Article
CAS
PubMed
Google Scholar
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–61.
Article
CAS
Google Scholar
Peck SH, Bendigo JR, Tobias JW, Dodge GR, Malhotra NR, Mauck RL, et al. Hypoxic preconditioning enhances bone marrow-derived mesenchymal stem cell survival in a low oxygen and nutrient-limited 3D microenvironment. Cartilage. 2021;12:512–25. https://doi.org/10.1177/1947603519841675.
Article
CAS
PubMed
Google Scholar
Yu CY, Boyd NM, Cringle SJ, Alder VA, Yu DY. Oxygen distribution and consumption in rat lower incisor pulp. Arch Oral Biol. 2002;47:529–36.
Article
CAS
Google Scholar
Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm. 2013;2013:1–11.
Article
Google Scholar
Eliasson P, Jönsson J-I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol. 2010;222:17–22. https://doi.org/10.1002/jcp.21908.
Article
CAS
PubMed
Google Scholar
Iida K, Takeda-Kawaguchi T, Tezuka Y, Kunisada T, Shibata T, Tezuka K. Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells. Arch Oral Biol. 2010;55:648–54.
Article
CAS
Google Scholar
Aranha AMF, Zhang Z, Neiva KG, Costa CAS, Hebling J, Nör JE. Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod. 2010;36:1633–7.
Article
Google Scholar
Sakdee JB, White RR, Pagonis TC, Hauschka PV. Hypoxia-amplified proliferation of human dental pulp cells. J Endod. 2009;35:818–23.
Article
Google Scholar
Zhou Y, Fan W, Xiao Y. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC. BioMed Res Int. 2014;2014:1–7.
Google Scholar
Vukovic M, Sepulveda C, Subramani C, Guitart AV, Mohr J, Allen L, et al. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood. 2016;127:2841–6.
Article
CAS
Google Scholar
Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014;14:592–605.
Article
CAS
Google Scholar
Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24:651–63.
Article
CAS
Google Scholar
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220:e202009045.
Article
CAS
Google Scholar
Aich M, Chakraborty D. Role of lncRNAs in stem cell maintenance and differentiation. Curr Top Dev Biol. 2020;138:73–112.
Article
CAS
Google Scholar
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.
Article
CAS
Google Scholar
Xu S, Tang L, Liu Z, Luo C, Cheng Q. Hypoxia-related lncRNA correlates with prognosis and immune microenvironment in lower-grade glioma. Front Immunol. 2021;12:731048. https://doi.org/10.3389/fimmu.2021.731048/full.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi H, Wang M, Sun J, Wang H, Li Y, Chen B, et al. A novel long noncoding RNA FAF inhibits apoptosis via upregulating FGF9 through PI3K/AKT signaling pathway in ischemia–hypoxia cardiomyocytes. J Cell Physiol. 2019;234:21973–87. https://doi.org/10.1002/jcp.28760.
Article
CAS
PubMed
Google Scholar
He J, Huang Y, Liu J, Ge L, Tang X, Lu M, et al. Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant lncRNA and mRNA analysis. Life Sci. 2021;265:118861.
Article
CAS
Google Scholar
Meng S-S, Xu X-P, Chang W, Lu Z-H, Huang L-L, Xu J-Y, et al. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Stem Cell Res Ther. 2018;9:280. https://doi.org/10.1186/s13287-018-1031-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou J, Wang L, Wu Q, Zheng G, Long H, Wu H, et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther. 2018;9:109. https://doi.org/10.1186/s13287-018-0861-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi R, Yang H, Lin X, Cao Y, Zhang C, Fan Z, et al. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Res Ther. 2019;10:89. https://doi.org/10.1186/s13287-019-1192-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.
Article
CAS
Google Scholar
Chen L, Shi G, Chen G, Li J, Li M, Zou C, et al. Transcriptome analysis suggests the roles of long intergenic non-coding RNAs in the growth performance of weaned piglets. Front Genet. 2019;10:196. https://doi.org/10.3389/fgene.2019.00196/full.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, et al. Multilineage differentiation potential of human dental pulp stem cells—impact of 3D and hypoxic environment on osteogenesis in vitro. Int J Mol Sci. 2020;21:6172.
Article
CAS
Google Scholar
Alaidaroos NYA, Alraies A, Waddington RJ, Sloan AJ, Moseley R. Differential SOD2 and GSTZ1 profiles contribute to contrasting dental pulp stem cell susceptibilities to oxidative damage and premature senescence. Stem Cell Res Ther. 2021;12:142. https://doi.org/10.1186/s13287-021-02209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asghari M, Nasoohi N, Hodjat M. High glucose promotes the aging of human dental pulp cells through Wnt/beta-catenin signaling. Dent Med Probl. 2021;58:39–46.
Article
Google Scholar
Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Gimeno-Mallench L, Inglés M, Viña J, et al. Extracellular vesicles from healthy cells improves cell function and stemness in premature senescent stem cells by miR-302b and HIF-1α activation. Biomolecules. 2020;10:957.
Article
CAS
Google Scholar
Werle SB, Chagastelles P, Pranke P, Casagrande L. Hypoxia upregulates the expression of the pluripotency markers in the stem cells from human deciduous teeth. Clin Oral Investig. 2019;23:199–207. https://doi.org/10.1007/s00784-018-2427-9.
Article
PubMed
Google Scholar
Li J, Liao T, Liu H, Yuan H, Ouyang T, Wang J, et al. Hypoxic glioma stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-Myc/HIF-1α. Cancer Res. 2020;81:114–28. https://doi.org/10.1158/0008-5472.CAN-20-2270.
Article
PubMed
Google Scholar
García-Venzor A, Mandujano-Tinoco EA, Ruiz-Silvestre A, Sánchez JM, Lizarraga F, Zampedri C, et al. lncMat2B regulated by severe hypoxia induces cisplatin resistance by increasing DNA damage repair and tumor-initiating population in breast cancer cells. Carcinogenesis. 2020;41:1485–97.
Article
Google Scholar
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 2021;40:1609–27.
Article
CAS
Google Scholar
Yao R-W, Wang Y, Chen L-L. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.
Article
CAS
Google Scholar
Rashid F, Shah A, Shan G. Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinform. 2016;14:73–80.
Article
Google Scholar
Fu X, Feng Y, Shao B, Zhang Y. Taxifolin protects dental pulp stem cells under hypoxia and inflammation conditions. Cell Transplant. 2021;30:096368972110344. https://doi.org/10.1177/09636897211034452.
Article
Google Scholar
Soares RJ, Maglieri G, Gutschner T, Diederichs S, Lund AH, Nielsen BS, et al. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res. 2018;46:e4.
Article
Google Scholar
Kim J, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.
Article
Google Scholar
Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 2012;4:a011189–a011189. https://doi.org/10.1101/cshperspect.a011189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2018;19:783–91.
PubMed
PubMed Central
Google Scholar
Liu F, Huang X, Luo Z, He J, Haider F, Song C, et al. Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells. Oxid Med Cell Longev. 2019;2019:1–10.
Google Scholar
Cai B, Zheng Y, Ma S, Xing Q, Wang X, Yang B, et al. Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep. 2018. https://doi.org/10.3892/mmr.2018.8546.
Article
PubMed
PubMed Central
Google Scholar
Cai R, Tang G, Zhang Q, Yong W, Zhang W, Xiao J, et al. A novel lnc-RNA, named lnc-ORA, is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells. 2019;8:477.
Article
CAS
Google Scholar
Wang XQ, Lo CM, Chen L, Ngan ES-W, Xu A, Poon RY. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ. 2017;24:38–48.
Article
CAS
Google Scholar
Luan Q, Pan L, He D, Gong X, Zhou H. SC79, the AKT activator protects cerebral ischemia in a rat model of ischemia/reperfusion injury. Med Sci Monit. 2018;24:5391–7.
Article
CAS
Google Scholar
Bhandi S, Al Kahtani A, Mashyakhy M, Alsofi L, Maganur PC, Vishwanathaiah S, et al. Modulation of the dental pulp stem cell secretory profile by hypoxia induction using cobalt chloride. J Pers Med. 2021;11:247. Available from: https://www.mdpi.com/2075-4426/11/4/247.
Zehra M, Zubairi W, Hasan A, Butt H, Ramzan A, Azam M, et al. Oxygen generating polymeric nano fibers that stimulate angiogenesis and show efficient wound healing in a diabetic wound model. Int J Nanomedicine. 2020;15:3511–22. Available from: https://www.dovepress.com/oxygen-generating-polymeric-nano-fibers-that-stimulate-angiogenesis-an-peer-reviewed-article-IJN.