Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL: How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010, 9: 203-214.
CAS
PubMed
Google Scholar
Brohem CA, Cardeal LB, Tiago M, Soengas MS, Barros SB, Maria-Engler SS: Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2011, 24: 35-50. 10.1111/j.1755-148X.2010.00786.x.
Article
PubMed Central
PubMed
Google Scholar
Taylor DK, Bubier JA, Silva KA, Sundberg JP: Development, structure, and keratin expression in C57BL/6J mouse eccrine glands. Vet Pathol. 2012, 49: 146-154. 10.1177/0300985811430511.
Article
PubMed Central
CAS
PubMed
Google Scholar
Birgersdotter A, Sandberg R, Ernberg I: Gene expression perturbation in vitro - a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005, 15: 405-412. 10.1016/j.semcancer.2005.06.009.
Article
PubMed
Google Scholar
Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S: High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011, 136: 473-478. 10.1039/c0an00609b.
Article
CAS
PubMed
Google Scholar
Stark HJ, Szabowski A, Fusenig NE, Maas-Szabowski N: Organotypic cocultures as skin equivalents: a complex and sophisticated in vitro system. Biol Proced Online. 2004, 6: 55-60. 10.1251/bpo72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K: Skin tissue engineering - in vivo and in vitro applications. Adv Drug Deliv Rev. 2011, 63: 352-366. 10.1016/j.addr.2011.01.005.
Article
CAS
PubMed
Google Scholar
Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T: Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981, 211: 1052-1054. 10.1126/science.7008197.
Article
CAS
PubMed
Google Scholar
Carlson MW, Alt-Holland A, Egles C, Garlick JA: Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol. 2008, Chapter 19: Unit 19 9
Google Scholar
Gangatirkar P, Paquet-Fifield S, Li A, Rossi R, Kaur P: Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc. 2007, 2: 178-186. 10.1038/nprot.2006.448.
Article
CAS
PubMed
Google Scholar
Topol BM, Haimes HB, Dubertret L, Bell E: Transfer of melanosomes in a skin equivalent model in vitro. J Invest Dermatol. 1986, 87: 642-647. 10.1111/1523-1747.ep12456314.
Article
CAS
PubMed
Google Scholar
Hudon V, Berthod F, Black AF, Damour O, Germain L, Auger FA: A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol. 2003, 148: 1094-1104. 10.1046/j.1365-2133.2003.05298.x.
Article
CAS
PubMed
Google Scholar
Bechetoille N, Dezutter-Dambuyant C, Damour O, Andre V, Orly I, Perrier E: Effects of solar ultraviolet radiation on engineered human skin equivalent containing both Langerhans cells and dermal dendritic cells. Tissue Eng. 2007, 13: 2667-2679. 10.1089/ten.2006.0405.
Article
CAS
PubMed
Google Scholar
Roggenkamp D, Kopnick S, Stab F, Wenck H, Schmelz M, Neufang G: Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol. 2013, 133: 1620-1628. 10.1038/jid.2012.464.
Article
CAS
PubMed
Google Scholar
MacNeil S: Progress and opportunities for tissue-engineered skin. Nature. 2007, 445: 874-880. 10.1038/nature05664.
Article
CAS
PubMed
Google Scholar
Hoeger PH, Yates RW, Harper JI: Palmoplantar keratoderma associated with congenital heart disease. Br J Dermatol. 1998, 138: 506-509. 10.1046/j.1365-2133.1998.02134.x.
Article
CAS
PubMed
Google Scholar
Boehncke WH: Perspective: don't be superficial. Nature. 2012, 492: S55-10.1038/492S55a.
Article
CAS
PubMed
Google Scholar
DeWeerdt S: Psychodermatology: an emotional response. Nature. 2012, 492: S62-S63. 10.1038/492S62a.
Article
CAS
PubMed
Google Scholar
Liu XY, Liu ZC, Sun YG, Ross M, Kim S, Tsai FF, Li QF, Jeffry J, Kim JY, Loh HH, Chen ZF: Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell. 2011, 147: 447-458. 10.1016/j.cell.2011.08.043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Redondo P, de Felipe I, de la Pena A, Aramendia JM, Vanaclocha V: Drug-induced hypersensitivity syndrome and toxic epidermal necrolysis. Treatment with N-acetylcysteine. Br J Dermatol. 1997, 136: 645-646. 10.1111/j.1365-2133.1997.tb02175.x.
Article
CAS
PubMed
Google Scholar
Gerull R, Nelle M, Schaible T: Toxic epidermal necrolysis and Stevens-Johnson syndrome: a review. Crit Care Med. 2011, 39: 1521-1532. 10.1097/CCM.0b013e31821201ed.
Article
PubMed
Google Scholar
Roujeau JC, Stern RS: Severe adverse cutaneous reactions to drugs. N Engl J Med. 1994, 331: 1272-1285. 10.1056/NEJM199411103311906.
Article
CAS
PubMed
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872. 10.1016/j.cell.2007.11.019.
Article
CAS
PubMed
Google Scholar
Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ: Generation of induced pluripotent stem cells from human blood. Blood. 2009, 113: 5476-5479. 10.1182/blood-2009-02-204800.
Article
PubMed Central
CAS
PubMed
Google Scholar
Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins C, Christiano AM: Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLOS ONE. 2013, 8: e77673-10.1371/journal.pone.0077673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grskovic M, Javaherian A, Strulovici B, Daley GQ: Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011, 10: 915-929.
CAS
PubMed
Google Scholar
Rowntree RK, McNeish JD: Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery. Regen Med. 2010, 5: 557-568. 10.2217/rme.10.36.
Article
CAS
PubMed
Google Scholar
van de Stolpe A, den Toonder J: Workshop meeting report Organs-on-Chips: human disease models. Lab Chip. 2013, 13: 3449-3470. 10.1039/c3lc50248a.
Article
CAS
PubMed
Google Scholar
Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 2011, 29: 1117-1119. 10.1038/nbt.2052.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011, 471: 68-73. 10.1038/nature09798.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011, 8: 106-118. 10.1016/j.stem.2010.12.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, Ooi SS, Kim SY, Bestor TH, Shioda T, Park PJ, Hochedlinger K: Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet. 2012, 44: 398-405. 10.1038/ng.1110. S1-S2
Article
PubMed Central
CAS
PubMed
Google Scholar
Vitale AM, Matigian NA, Ravishankar S, Bellette B, Wood SA, Wolvetang EJ, Mackay-Sim A: Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med. 2012, 1: 641-650. 10.5966/sctm.2012-0043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lake BB, Fink J, Klemetsaune L, Fu X, Jeffers JR, Zambetti GP, Xu Y: Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing Puma. Stem Cells. 2012, 30: 888-897. 10.1002/stem.1054.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tornier C, Amsellem C, Fraissinette Ade B, Alepee N: Assessment of the optimized SkinEthic Reconstructed Human Epidermis (RHE) 42 bis skin irritation protocol over 39 test substances. Toxicol In Vitro. 2010, 24: 245-256. 10.1016/j.tiv.2009.08.023.
Article
CAS
PubMed
Google Scholar
Semlin L, Schafer-Korting M, Borelli C, Korting HC: In vitro models for human skin disease. Drug Discov Today. 2011, 16: 132-139. 10.1016/j.drudis.2010.12.001.
Article
CAS
PubMed
Google Scholar
Jean J, Lapointe M, Soucy J, Pouliot R: Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci. 2009, 53: 19-25. 10.1016/j.jdermsci.2008.07.009.
Article
CAS
PubMed
Google Scholar
Auxenfans C, Fradette J, Lequeux C, Germain L, Kinikoglu B, Bechetoille N, Braye F, Auger FA, Damour O: Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol. 2009, 19: 107-113.
PubMed
Google Scholar
Michel M, L'Heureux N, Pouliot R, Xu W, Auger FA, Germain L: Characterization of a new tissue-engineered human skin equivalent with hair. Vitro Cell Dev Biol Anim. 1999, 35: 318-326. 10.1007/s11626-999-0081-x.
Article
CAS
Google Scholar
Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA: Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009, 106: 15768-15773. 10.1073/pnas.0906894106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hewitt KJ, Shamis Y, Hayman RB, Margvelashvili M, Dong S, Carlson MW, Garlick JA: Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. PLoS One. 2011, 6: e17128-10.1371/journal.pone.0017128.
Article
PubMed Central
CAS
PubMed
Google Scholar
Itoh M, Kiuru M, Cairo MS, Christiano AM: Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2011, 108: 8797-8802. 10.1073/pnas.1100332108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Selekman JA, Grundl NJ, Kolz JM, Palecek SP: Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Eng Part C Methods. 2013,
Google Scholar
Tornier C, Rosdy M, Maibach HI: In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested with two protocols. Toxicol In Vitro. 2006, 20: 401-416. 10.1016/j.tiv.2005.09.004.
Article
CAS
PubMed
Google Scholar
Golden AP, Tien J: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip. 2007, 7: 720-725. 10.1039/b618409j.
Article
CAS
PubMed
Google Scholar
Levenberg S, Ferreira LS, Chen-Konak L, Kraehenbuehl TP, Langer R: Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nat Protoc. 2010, 5: 1115-1126. 10.1038/nprot.2010.31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costin GE, Hearing VJ: Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007, 21: 976-994. 10.1096/fj.06-6649rev.
Article
CAS
PubMed
Google Scholar
Li L, Fukunaga-Kalabis M, Herlyn M: The three-dimensional human skin reconstruct model: a tool to study normal skin and melanoma progression. J Vis Exp. 2011, 54: e2937-
Google Scholar
Ohta S, Imaizumi Y, Akamatsu W, Okano H, Kawakami Y: Generation of human melanocytes from induced pluripotent stem cells. Methods Mol Biol. 2013, 989: 193-215. 10.1007/978-1-62703-330-5_16.
Article
CAS
PubMed
Google Scholar
Sung JH, Esch MB, Prot JM, Long CJ, Smith A, Hickman JJ, Shuler ML: Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip. 2013, 13: 1201-1212. 10.1039/c3lc41017j.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE: Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012, 12: 2156-2164. 10.1039/c2lc40089h.
Article
CAS
PubMed
Google Scholar
Swope VB, Boyce ST: Differential expression of matrix metalloproteinase-1 in vitro corresponds to tissue morphogenesis and quality assurance of cultured skin substitutes. J Surg Res. 2005, 128: 79-86. 10.1016/j.jss.2005.03.018.
Article
CAS
PubMed
Google Scholar
Stark HJ, Willhauck MJ, Mirancea N, Boehnke K, Nord I, Breitkreutz D, Pavesio A, Boukamp P, Fusenig NE: Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur J Cell Biol. 2004, 83: 631-645. 10.1078/0171-9335-00435.
Article
PubMed
Google Scholar
Muffler S, Stark HJ, Amoros M, Falkowska-Hansen B, Boehnke K, Buhring HJ, Marme A, Bickenbach JR, Boukamp P: A stable niche supports long-term maintenance of human epidermal stem cells in organotypic cultures. Stem Cells. 2008, 26: 2506-2515. 10.1634/stemcells.2007-0991.
Article
CAS
PubMed
Google Scholar
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M: Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev. 2006, 86: 1309-1379. 10.1152/physrev.00026.2005.
Article
CAS
PubMed
Google Scholar
Wang A, Tang Z, Li X, Jiang Y, Tsou DA, Li S: Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs. 2012, 195: 5-14. 10.1159/000331412.
Article
PubMed
Google Scholar
Blais M, Grenier M, Berthod F: Improvement of nerve regeneration in tissue-engineered skin enriched with schwann cells. J Invest Dermatol. 2009, 129: 2895-2900. 10.1038/jid.2009.159.
Article
CAS
PubMed
Google Scholar
Robinson MK, Osborne R, Perkins MA: Strategies for the assessment of acute skin irritation potential. J Pharmacol Toxicol Methods. 1999, 42: 1-9. 10.1016/S1056-8719(99)00037-4.
Article
CAS
PubMed
Google Scholar
Tjabringa G, Bergers M, van Rens D, de Boer R, Lamme E, Schalkwijk J: Development and validation of human psoriatic skin equivalents. Am J Pathol. 2008, 173: 815-823. 10.2353/ajpath.2008.080173.
Article
PubMed Central
PubMed
Google Scholar
Friedmann PS, Gilchrest BA: Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol. 1987, 133: 88-94. 10.1002/jcp.1041330111.
Article
CAS
PubMed
Google Scholar
Gibbs S: In vitro irritation models and immune reactions. Skin Pharmacol Physiol. 2009, 22: 103-113. 10.1159/000178869.
Article
CAS
PubMed
Google Scholar
Nickoloff BJ, Griffiths CE, Barker JN: The role of adhesion molecules, chemotactic factors, and cytokines in inflammatory and neoplastic skin disease - 1990 update. J Invest Dermatol. 1990, 94: 151S-157S. 10.1111/1523-1747.ep12876134.
Article
CAS
PubMed
Google Scholar
Higgins CA, Chen JC, Cerise JC, Jahoda CA, Christiano AM: Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair follicle growth. Proc Natl Acad Sci USA. 2013, 110: 19679-19688. 10.1073/pnas.1309970110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jahoda CA, Horne KA, Oliver RF: Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984, 311: 560-562. 10.1038/311560a0.
Article
CAS
PubMed
Google Scholar
Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, Sadelain M: Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013, 31: 928-933. 10.1038/nbt.2678.
Article
CAS
PubMed
Google Scholar
Clark RA, Yamanaka K, Bai M, Dowgiert R, Kupper TS: Human skin cells support thymus-independent T cell development. J Clin Invest. 2005, 115: 3239-3249. 10.1172/JCI24731.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pinto S, Schmidt K, Egle S, Stark HJ, Boukamp P, Kyewski B: An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J Immunol. 2013, 190: 1085-1093. 10.4049/jimmunol.1201843.
Article
CAS
PubMed
Google Scholar