Brem H, Tomic-Canic M: Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007, 117: 1219-1222.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002, 106: 2781-2786.
Article
PubMed
Google Scholar
Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC: Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003, 162: 303-312.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC: The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009, 106: 13505-13510.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, Galiano RD, Chang EI, Galvez MG, Glotzbach JP, Wong VW, Brownlee M, Gurtner GC: HIF-1alpha dysfunction in diabetes. Cell Cycle. 2010, 9: 75-79.
Article
CAS
PubMed
Google Scholar
Rennert RC, Rodrigues M, Wong VW, Duscher D, Hu M, Maan Z, Sorkin M, Gurtner GC, Longaker MT: Biological therapies for the treatment of cutaneous wounds: phase III and launched therapies. Expert Opin Biol Ther. 2013, 13: 1523-1541.
Article
CAS
PubMed
Google Scholar
Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC: Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012, 33: 80-90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC: Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci. 2011, 11: 1458-1466.
PubMed Central
CAS
PubMed
Google Scholar
Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J, Gurtner GC: Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng Part A. 2011, 17: 631-644.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hong SJ, Traktuev DO, March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010, 15: 86-91.
Article
PubMed
Google Scholar
Kim EK, Li G, Lee TJ, Hong JP: The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plast Reconstr Surg. 2011, 128: 387-394.
Article
CAS
PubMed
Google Scholar
Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, Monabati A, Noorafshan A, Omrani GR: Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract. 2011, 93: 228-234.
Article
PubMed
Google Scholar
Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A: Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007, 119: 1409-1422. Discussion 1423-1404
Article
CAS
PubMed
Google Scholar
Yan J, Tie G, Wang S, Messina KE, DiDato S, Guo S, Messina LM: Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J Am Heart Assoc. 2012, 1: e002238-
PubMed Central
PubMed
Google Scholar
Jin P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H, Sun C: Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transplant Proc. 2010, 42: 2745-2752.
Article
CAS
PubMed
Google Scholar
El-Ftesi S, Chang EI, Longaker MT, Gurtner GC: Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg. 2009, 123: 475-485.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES: Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012, 20: 243-252.
Article
PubMed
Google Scholar
Glotzbach JP, Januszyk M, Vial IN, Wong VW, Gelbard A, Kalisky T, Thangarajah H, Longaker MT, Quake SR, Chu G, Gurtner GC: An information theoretic, microfluidic-based single-cell analysis permits identification of subpopulations among putatively homogeneous stem cells. PLoS One. 2011, 6: e21211-
Article
PubMed Central
CAS
PubMed
Google Scholar
Levi B, Wan DC, Glotzbach JP, Hyun J, Januszyk M, Montoro D, Sorkin M, James AW, Nelson ER, Li S, Quarto N, Lee M, Gurtner GC, Longaker MT: CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J Biol Chem. 2011, 286: 39497-39509.
Article
PubMed Central
CAS
PubMed
Google Scholar
McEvoy RC, Andersson J, Sandler S, Hellerstrom C: Multiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing beta cell line. J Clin Invest. 1984, 74: 715-722.
Article
PubMed Central
CAS
PubMed
Google Scholar
Albelda SM, Muller WA, Buck CA, Newman PJ: Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol. 1991, 114: 1059-1068.
Article
CAS
PubMed
Google Scholar
Chung MT, Zimmermann AS, Paik KJ, Morrison SD, Hyun JS, Lo DD, McArdle A, Montoro DT, Walmsley GG, Senarath-Yapa K, Sorkin M, Rennert R, Chen HH, Chung AS, Vistnes D, Gurtner GC, Longaker MT, Wan DC: Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cells Transl Med. 2013, 2: 808-817.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004, 10: 858-864.
Article
CAS
PubMed
Google Scholar
Suga H, Matsumoto D, Eto H, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K: Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells Dev. 2009, 18: 1201-1210.
Article
CAS
PubMed
Google Scholar
Yang D, Wang W, Li L, Peng Y, Chen P, Huang H, Guo Y, Xia X, Wang Y, Wang H, Wang WE, Zeng C: The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One. 2013, 8: e59020-
Article
PubMed Central
CAS
PubMed
Google Scholar
Suga H, Rennert RC, Rodrigues M, Sorkin M, Glotzbach JP, Januszyk M, Fujiwara T, Longaker MT, Gurtner GC: Tracking the elusive fibrocyte: Identification and characterization of collagen producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014, 32: 1347-1360.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC: Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011, 2011: 969618-
PubMed Central
PubMed
Google Scholar
Potthoff MJ, Olson EN: MEF2: a central regulator of diverse developmental programs. Development. 2007, 134: 4131-4140.
Article
CAS
PubMed
Google Scholar
Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M: A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008, 26: 2408-2418.
Article
PubMed
Google Scholar
van Hinsbergh VW, Koolwijk P: Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008, 78: 203-212.
Article
CAS
PubMed
Google Scholar
Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, Ghaedi M, Arjmand S, Najavand S, Khoshdel A: HIF-1alpha overexpression Induces angiogenesis in Mesenchymal stem cells. Biores Open Access. 2012, 1: 174-183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV: CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol. 2006, 177: 2651-2661.
Article
CAS
PubMed
Google Scholar
Babaei S, Teichert-Kuliszewska K, Zhang Q, Jones N, Dumont DJ, Stewart DJ: Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol. 2003, 162: 1927-1936.
Article
PubMed Central
CAS
PubMed
Google Scholar
Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A: Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007, 204: 605-618.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paes KT, Wang E, Henze K, Vogel P, Read R, Suwanichkul A, Kirkpatrick LL, Potter D, Newhouse MM, Rice DS: Frizzled 4 is required for retinal angiogenesis and maintenance of the blood-retina barrier. Invest Ophthalmol Vis Sci. 2011, 52: 6452-6461.
Article
CAS
PubMed
Google Scholar
Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T: Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013, 21: 545-553.
Article
PubMed
Google Scholar