Kawaguchi N, Nakanishi T: Cardiomyocyte regeneration. Cells. 2013, 2: 67-82.
Article
PubMed Central
CAS
PubMed
Google Scholar
McMurray JJ, Pfeffer MA: Heart failure. Lancet. 2005, 365: 1877-1889.
Article
PubMed
Google Scholar
Brignier AC, Gewirtz AM: Embryonic and adult stem cell therapy. J Allergy Clin Immunol. 2010, 125: S336-S344.
Article
PubMed
Google Scholar
Jameel MN, Zhang J: Stem cell therapy for ischemic heart disease. Antioxid Redox Signal. 2010, 13: 1879-1897.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A: Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc. 2009, 84: 876-892.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiba Y, Hauch KD, Laflamme MA: Cardiac applications for human pluripotent stem cells. Curr Pharm Des. 2009, 15: 2791-2806.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007, 25: 1015-1024.
Article
CAS
PubMed
Google Scholar
Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE: Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010, 5: e11134-
Article
PubMed Central
PubMed
Google Scholar
Tran TH, Wang X, Browne C, Zhang Y, Schinke M, Izumo S, Burcin M: Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells. 2009, 27: 1869-1878.
Article
CAS
PubMed
Google Scholar
Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM: Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature. 2008, 453: 524-528.
Article
CAS
PubMed
Google Scholar
Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A, Zweigerdt R, Davidson BP: Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 2008, 76: 357-370.
Article
CAS
PubMed
Google Scholar
Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012, 109: E1848-E1857.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013, 8: 162-175.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT: Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003, 107: 1912-1916.
Article
CAS
PubMed
Google Scholar
Yoon BS, Yoo SJ, Lee JE, You S, Lee HT, Yoon HS: Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation. 2006, 74: 149-159.
Article
CAS
PubMed
Google Scholar
Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L: Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003, 107: 2733-2740.
Article
CAS
PubMed
Google Scholar
Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C: Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells. 2005, 23: 772-780.
Article
CAS
PubMed
Google Scholar
Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP: Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation. 2008, 76: 958-970.
Article
CAS
PubMed
Google Scholar
Ying QL, Stavridis M, Griffiths D, Li M, Smith A: Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003, 21: 183-186.
Article
CAS
PubMed
Google Scholar
Hwang YS, Polak JM, Mantalaris A: In vitro direct chondrogenesis of murine embryonic stem cells by bypassing embryoid body formation. Stem Cells Dev. 2008, 17: 971-978.
Article
CAS
PubMed
Google Scholar
Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001, 108: 407-414.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG: Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005, 106: 1601-1603.
Article
CAS
PubMed
Google Scholar
Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, Pasumarthi KB, Field LJ: Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 2003, 9: 767-778.
Article
CAS
PubMed
Google Scholar
Niebruegge S, Nehring A, Bar H, Schroeder M, Zweigerdt R, Lehmann J: Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A. 2008, 14: 1591-1601.
Article
CAS
PubMed
Google Scholar
Chen AK, Reuveny S, Oh SK: Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv. 2013, 31: 1032-1046.
Article
PubMed
Google Scholar
Kurosawa H: Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007, 103: 389-398.
Article
CAS
PubMed
Google Scholar
Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW: Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008, 26: 2300-2310.
Article
PubMed
Google Scholar
Rajala K, Pekkanen-Mattila M, Aalto-Setala K: Cardiac differentiation of pluripotent stem cells. Stem Cells Int. 2011, 2011: 383709-
Article
PubMed Central
PubMed
Google Scholar
Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ, Thomson JA, Lyons GE, Palecek SP, Kamp TJ: The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials. 2010, 31: 1885-1893.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mohr JC, de Pablo JJ, Palecek SP: 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006, 27: 6032-6042.
Article
CAS
PubMed
Google Scholar
Chen AK, Ting S, Seow J, Reuveny S, Oh SK: Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther. 2013, 5: 12-
Article
Google Scholar
Chen AK, Chen X, Choo AB, Reuveny S, Oh SK: Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011, 7: 97-111.
Article
CAS
PubMed
Google Scholar
Heng BC, Li J, Chen AK, Reuveny S, Cool SM, Birch WR, Oh SK: Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev. 2012, 21: 1701-1715.
Article
CAS
PubMed
Google Scholar
Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S: Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009, 2: 219-230.
Article
CAS
PubMed
Google Scholar
Lam TL, Li J, Chen AK, Reuveny S, Oh SK, Birch WR: Cationic charge with vitronectin or laminin dictate the evolution of hESC/microcarrier aggregates and cell growth in agitated cultures. Stem Cells Dev. 2013, 23: 1688-1703.
Article
Google Scholar
Bardy J, Chen AK, Lim YM, Wu S, Wei S, Weiping H, Chan K, Reuveny S, Oh SK: Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods. 2013, 19: 166-180.
Article
CAS
PubMed
Google Scholar
Choo A, Padmanabhan J, Chin A, Fong WJ, Oh SK: Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. J Biotechnol. 2006, 122: 130-141.
Article
CAS
PubMed
Google Scholar
Lecina M, Ting S, Choo A, Reuveny S, Oh S: Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods. 2010, 16: 1609-1619.
Article
CAS
PubMed
Google Scholar
Chen X, Chen A, Woo TL, Choo AB, Reuveny S, Oh SK: Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media. Stem Cells Dev. 2010, 19: 1781-1792.
Article
CAS
PubMed
Google Scholar
Asai Y, Tada M, Otsuji TG, Nakatsuji N: Combination of functional cardiomyocytes derived from human stem cells and a highly-efficient microelectrode array system: an ideal hybrid model assay for drug development. Curr Stem Cell Res Ther. 2010, 5: 227-232.
Article
CAS
PubMed
Google Scholar
Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H: Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003, 377: 486-495.
Article
CAS
PubMed
Google Scholar
Halbach M, Egert U, Hescheler J, Banach K: Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem. 2003, 13: 271-284.
Article
CAS
PubMed
Google Scholar
Haws CW, Lux RL: Correlation between in vivo transmembrane action potential durations and activation-recovery intervals from electrograms. Effects of interventions that alter repolarization time. Circulation. 1990, 81: 281-288.
Article
CAS
PubMed
Google Scholar
Luo S, Michler K, Johnston P, Macfarlane PW: A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J Electrocardiol. 2004, 37: 81-90.
Article
PubMed
Google Scholar
Martin BL, Kimelman D: Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell. 2008, 15: 121-133.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zeng AP, Hu WS, Deckwer WD: Variation of stoichiometric ratios and their correlation for monitoring and control of animal cell cultures. Biotechnol Prog. 1998, 14: 434-441.
Article
CAS
PubMed
Google Scholar
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Zambidis ET, Tung L: Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Prog Biophys Mol Biol. 2012, 110: 166-177.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T: Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun. 2012, 425: 321-327.
Article
CAS
PubMed
Google Scholar
Kehoe DE, Jing D, Lock LT, Tzanakakis ES: Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A. 2010, 16: 405-421.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM: Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol. 2008, 138: 24-32.
Article
CAS
PubMed
Google Scholar
Murry CE, Keller G: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008, 132: 661-680.
Article
CAS
PubMed
Google Scholar
Lev S, Kehat I, Gepstein L: Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Ann N Y Acad Sci. 2005, 1047: 50-65.
Article
CAS
PubMed
Google Scholar
Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, Zandstra PW: Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng. 2009, 102: 493-507.
Article
CAS
PubMed
Google Scholar
Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW: Niche-mediated control of human embryonic stem cell self-renewal and differentiation. Embo J. 2007, 26: 4744-4755.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu Y, Ai Z, Yao K, Cao L, Du J, Shi X, Guo Z, Zhang Y: CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp Cell Res. 2013, 319: 2684-2699.
Article
CAS
PubMed
Google Scholar
Nienow AW: Reactor engineering in large scale animal cell culture. Cytotechnology. 2006, 50: 9-33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brembeck FH, Rosario M, Birchmeier W: Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev. 2006, 16: 51-59.
Article
CAS
PubMed
Google Scholar
Mook RA, Chen M, Lu J, Barak LS, Lyerly HK, Chen W: Small molecule modulators of Wnt/beta-catenin signaling. Bioorg Med Chem Lett. 2013, 23: 2187-2191.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kinney MA, Sargent CY, McDevitt TC: The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng Part B Rev. 2011, 17: 249-262.
Article
PubMed Central
PubMed
Google Scholar
Saha S, Ji L, de Pablo JJ, Palecek SP: Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol. 2006, 206: 126-137.
Article
CAS
PubMed
Google Scholar
Kallos MS, Behie LA: Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng. 1999, 63: 473-483.
Article
CAS
PubMed
Google Scholar
Ivanovic Z: Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol. 2009, 219: 271-275.
Article
CAS
PubMed
Google Scholar
Varum S, Rodrigues AS, Moura MB, Momcilovic O, CAt E, Ramalho-Santos J, Van Houten B, Schatten G: Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 2011, 6: e20914-
Article
PubMed Central
CAS
PubMed
Google Scholar
Mostafa SS, Papoutsakis ET, Miller WM: Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific markers in cultured human megakaryocytes. Exp Hematol. 2001, 29: 873-883.
Article
CAS
PubMed
Google Scholar
Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS: Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol. 2007, 27: 5737-5745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS: Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 2012, 72: 3607-3617.
Article
CAS
PubMed
Google Scholar
Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B, Wang L, Jin Y, Yang HT: Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012, 22: 219-236.
Article
PubMed Central
CAS
PubMed
Google Scholar