Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015;16(3):239–53. https://doi.org/10.1016/j.stem.2015.02.019.
Article
CAS
PubMed
Google Scholar
Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schurmann A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–84. https://doi.org/10.1016/j.stem.2017.02.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naveiras O, Valentina N, Wenzel P, Fahey F, Daley G. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment. Nature. 2009;460(9):259–63. https://doi.org/10.1002/maco.19800310308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Zhang W, Ran Q, Xiang Y, Zhong JF, Li SC, Li Z. The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis. Stem Cells Int. 2018;2018:1540148. https://doi.org/10.1155/2018/1540148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu RJ, Wu MQ, Li ZJ, Zhang Y, Liu KY. Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int J Hematol. 2013;97(1):58–72. https://doi.org/10.1007/s12185-012-1233-4.
Article
CAS
PubMed
Google Scholar
Liu H, He J, Koh SP, Zhong Y, Liu Z, Wang Z, Zhang Y, Li Z, Tam BT, Lin P, et al. Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Sci Transl Med. 2019;11(494):1–14. https://doi.org/10.1126/scitranslmed.aau9087.
Article
CAS
Google Scholar
Verma D, Zanetti C, Godavarthy PS, Kumar R, Minciacchi VR, Pfeiffer J, Metzler M, Lefort S, Maguer-Satta V, Nicolini FE, et al. Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-Cell acute lymphoblastic leukemia. Leukemia. 2020;34(6):1540–52. https://doi.org/10.1038/s41375-019-0674-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Hendrix A, Hernot S, Lemaire M, DeBruyne E, VaNValckenborgh E, Lahoutte T, De Wever O, Vanderkerken K, Menu E. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66. https://doi.org/10.1182/blood-2014-03-562439.
Article
CAS
PubMed
Google Scholar
Shastri A, Will B, Steidl U, Verma A. Stem and progenitor cell alterations in myelodysplastic syndromes. Blood. 2017;129(12):1586–95. https://doi.org/10.1182/blood-2016-10-696062.1586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL, Schrier SL, Park CY, Weissman IL. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci USA. 2013;110(8):3011–6. https://doi.org/10.1073/pnas.1222861110.
Article
PubMed
PubMed Central
Google Scholar
Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R, Yu Y, Bhagat TD, Bhattacharyya S, Barreyro L, Hueck C, et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood. 2012;120(10):2076–86. https://doi.org/10.1182/blood-2011-12-399683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woll PS, Kjällquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, Erlandsson R, Ngara M, Anderson K, Deng Q, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25(6):794–808. https://doi.org/10.1016/j.ccr.2014.03.036.
Article
CAS
PubMed
Google Scholar
Carter DH, Sloan P, Aaron JE. Immunolocalization of collagen types I and III, tenascin, and fibronectin in intramembranous bone. J Histochem Cytochem. 1991;39(5):599–606. https://doi.org/10.1177/39.5.1707904.
Article
CAS
PubMed
Google Scholar
Gupta BP, Oegema TR Jr, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM. Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood. 1998;92(12):4641–52.
Article
CAS
Google Scholar
Klein G, Müller CA, Tillet E, Chu ML, Timpl R. Collagen type VI in the human bone marrow microenvironment: a strong cytoadhesive component. Blood. 1995;86(5):1740–8.
Article
CAS
Google Scholar
Malara A, Currao M, Gruppi C, Celesti G, Viarengo G, Buracchi C, Laghi L, Kaplan DL, Balduini A. Megakaryocytes contribute to the bone marrow-matrix environment by expressing. Stem Cells. 2014;32(4):926–37. https://doi.org/10.1002/stem.1626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, Nagasawa T, Suda T, Kubota Y. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood. 2012;119(23):5429–37. https://doi.org/10.1182/blood-2011-11-393645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson SK, Debatis ME, Dooner MS, Madri JA, Quesenberry PJ, Becker PS. Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem. 1998;46(3):371–7. https://doi.org/10.1177/002215549804600311.
Article
CAS
PubMed
Google Scholar
Schofield KP, Gallagher JT, David G. Expression of proteoglycan core proteins in human bone marrow stroma. Biochem J. 1999;343(Pt 3):663–8.
Article
CAS
Google Scholar
Sidhu I, Barwe SP, Gopalakrishnapillai A. The extracellular matrix: a key player in the pathogenesis of hematologic malignancies. Blood Rev. 2020;48: 100787. https://doi.org/10.1016/j.blre.2020.100787.
Article
CAS
PubMed
Google Scholar
Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome. In: Silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular and Cellular Proteomics. 2012. 11 (4): 1–18. https://doi.org/10.1074/mcp.M111.014647
Çelik H, Lindblad KE, Popescu B, Gui G, Goswami M, Valdez J, DeStefano C, Lai C, Thompson J, Ghannam JY, et al. Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv. 2020;4(2):367–79. https://doi.org/10.1182/bloodadvances.2019001124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Izzi V, Lakkala J, Devarajan R, Ruotsalainen H, Savolainen ER, Koistinen P, Heljasvaara R, Pihlajaniemi T. An extracellular matrix signature in leukemia precursor cells and acute myeloid leukemia. Haematologica. 2017;23(4):471–3. https://doi.org/10.1097/GME.0000000000000638.
Article
Google Scholar
Braghetta P, Ferrari A, De Gemmis P, Zanetti M, Volpin D, Bonaldo P, Bressan GM. Overlapping, complementary and site-specific expression pattern of genes of the EMILIN/Multimerin family. Matrix Biol. 2004;22(7):549–56. https://doi.org/10.1016/j.matbio.2003.10.005.
Article
CAS
PubMed
Google Scholar
Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/multimerin family. Front Immunol. 2012;2:93. https://doi.org/10.3389/fimmu.2011.00093.
Article
PubMed
PubMed Central
Google Scholar
Mongiat M, Ligresti G, Marastoni S, Lorenzon E, Doliana R, Colombatti A. Regulation of the extrinsic apoptotic pathway by the extracellular matrix glycoprotein EMILIN2. Mol Cell Biol. 2007;27(20):7176–87. https://doi.org/10.1128/MCB.00696-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mongiat M, Marastoni S, Ligresti G, Lorenzon E, Schiappacassi M, Perris R, Frustaci S, Colombatti A. The extracellular matrix glycoprotein elastin microfibril interface located protein 2: a dual role in the tumor microenvironment. Neoplasia. 2010;12(4):294–304. https://doi.org/10.1593/neo.91930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulitti A, Andreuzzi E, Bizzotto D, Pellicani R, Tarticchio G, Marastoni S, Pastrello C, Jurisica I, Ligresti G, Bucciotti F, et al. The ablation of the matricellular protein emilin2 causes defective vascularization due to impaired EGFR-dependent IL-8 production affecting tumor growth. Oncogene. 2018;37(25):3399–414. https://doi.org/10.1038/s41388-017-0107-x.
Article
CAS
PubMed
Google Scholar
Abdallah BM, Alzahrani AM, Abdel-Moneim AM, Ditzel N, Kassem M. A simple and reliable protocol for long-term culture of murine bone marrow stromal (mesenchymal) stem cells that retained their in vitro and in vivo stemness in long-term culture. Biol Proced Online. 2019;21(1):1–11. https://doi.org/10.1186/s12575-019-0091-3.
Article
Google Scholar
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr. 2014;8(6):563–77. https://doi.org/10.4161/19336918.2014.968501.
Article
PubMed
PubMed Central
Google Scholar
Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014;35(1):32–7. https://doi.org/10.1016/j.it.2013.10.002.
Article
CAS
PubMed
Google Scholar
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci. 2016;1370(1):82–96. https://doi.org/10.1111/nyas.13016.
Article
PubMed
PubMed Central
Google Scholar
Zhao M, Li LH. Regulation of hematopoietic stem cells in the niche. Science China Life Sciences. 2015;58(12):1209–15. https://doi.org/10.1007/s11427-015-4960-y.
Article
CAS
PubMed
Google Scholar
Kramer AC, Blake AL, Taisto ME, Lehrke MJ, Webber BR, Lund TC. Dermatopontin in bone marrow extracellular matrix regulates adherence but is dispensable for murine hematopoietic cell maintenance. Stem Cell Rep. 2017;9(3):770–8. https://doi.org/10.1016/j.stemcr.2017.07.021.
Article
CAS
Google Scholar
Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He BC, Park JK, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 2009;18(4):545–58. https://doi.org/10.1089/scd.2008.0130.
Article
CAS
PubMed
Google Scholar
Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res. 2010;25(10):2138–47. https://doi.org/10.1002/jbmr.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding SY, Bredella MA, Fazeli PK, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6:7808. https://doi.org/10.1038/ncomms8808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Xu J, He J, Liu H, Lin P, Wan X, Navone NM, Tong Q, Kwak LW, Orlowski RZ, et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 2015;6(33):3429–41. https://doi.org/10.18632/oncotarget.6020.
Article
Google Scholar
Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: dangerous accomplices in multiple myeloma. J Cell Physiol. 2018;233(12):9159–66. https://doi.org/10.1002/jcp.26884.
Article
CAS
PubMed
Google Scholar
Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y. Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. Am J Pathol. 2016;186(11):3054–63. https://doi.org/10.1016/j.ajpath.2016.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa S, Reagan MR. Therapeutic irradiation: consequences for bone and bone marrow adipose tissue. Front Endocrinol. 2019;10:587. https://doi.org/10.3389/fendo.2019.00587.
Article
Google Scholar
Curi MM, Cardoso CL, De Lima HG, Kowalski LP, Martins MD. Histopathologic and histomorphometric analysis of irradiation injury in bone and the surrounding soft tissues of the jaws. J Oral Maxillofac Surg. 2016;74(1):190–9. https://doi.org/10.1016/j.joms.2015.07.009.
Article
PubMed
Google Scholar
Green DE, Adler BJ, Chan ME, Lennon JJ, Acerbo AS, Miller LM, Rubin CT. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes. PLoS ONE. 2013;8(5): e64952. https://doi.org/10.1371/journal.pone.0064952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou Q, Hong W, Zhou Y, Ding Q, Wang J, Jin W, Gao J, Hua G, Xu X. Bone marrow stem cell dysfunction in radiation-induced abscopal bone loss. J Orthop Surg Res. 2016;11(1):1–10. https://doi.org/10.1186/s13018-015-0339-9.
Article
CAS
Google Scholar
Schiavinato A, Keene DR, Wohl AP, Corallo D, Colombatti A, Wagener R, Paulsson M, Bonaldo P, Sengle G. Targeting of EMILIN-1 and EMILIN-2 to fibrillin microfibrils facilitates their incorporation into the extracellular matrix. J Investig Dermatol. 2016;136(6):1150–60. https://doi.org/10.1016/j.jid.2016.02.021.
Article
CAS
PubMed
Google Scholar
Choi JS, Harley BAC. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci Adv. 2017;3(1): e1600485. https://doi.org/10.1126/sciadv.1600455.
Article
CAS
Google Scholar
Shin JW, Swift J, Ivanovska I, Spinler KR, Buxboim A, Discher DE. Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation. 2013;86(3):77–86. https://doi.org/10.1016/j.diff.2013.05.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019;10(1):327. https://doi.org/10.1186/s13287-019-1422-7.
Article
PubMed
PubMed Central
Google Scholar
Will B, Vogler TO, Narayanagari S, Bartholdy B, Todorova TI, Da Silva Ferreira M, Chen J, Yu Y, Mayer J, Barreyro L, et al. Minimal PU1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med. 2015;21(10):1172–81. https://doi.org/10.1038/nm.3936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh J, Asahina N, Kitano S, Kino Y. A comprehensive Chip-Seq-based PU1/Spi1 target genes in microglia. Syst Biol. 2014;3(2):159–79. https://doi.org/10.4137/GRSB.S1971.
Article
Google Scholar
Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Transl. 2015;3(1):26–33. https://doi.org/10.1016/j.jot.2014.07.005.
Article
Google Scholar
Caroti CM, Ahn H, Salazar HF, Joseph G, Sankar SB, Willett NJ, Wood LB, Taylor WR, Lyle AN. A novel technique for accelerated culture of murine mesenchymal stem cells that allows for sustained multipotency. Sci Rep. 2017;7(1):1–14. https://doi.org/10.1038/s41598-017-13477-y.
Article
CAS
Google Scholar
Tang F, Zhang P, Ye P, Lazarski CA, Wu Q, Bergin IL, Bender TP, Hall MN, Cui Y, Zhang L, et al. A population of innate myelolymphoblastoid effector cell expanded by inactivation of MTOR complex 1 in mice. Elife. 2017;6:1–30. https://doi.org/10.7554/eLife.32497.
Article
CAS
Google Scholar
Bagger FO, Kinalis S, Rapin N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 2019;47(D1):D881–5. https://doi.org/10.1093/nar/gky1076.
Article
CAS
PubMed
Google Scholar