Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci. 2017;74:3711–39. https://doi.org/10.1007/s00018-017-2546-5.
Article
CAS
Google Scholar
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17:341–59. https://doi.org/10.1038/s41569-019-0331-x.
Article
Google Scholar
Guo Y, Pu WT. Cardiomyocyte maturation: new phase in development. Circ Res. 2020;126:1086–106. https://doi.org/10.1161/CIRCRESAHA.119.315862.
Article
CAS
Google Scholar
van Mil A, Balk GM, Neef K, et al. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res. 2018;114:1828–42. https://doi.org/10.1093/cvr/cvy208.
Article
CAS
Google Scholar
Veerman CC, Kosmidis G, Mummery CL, et al. Immaturity of human stem-cell-derived cardiomyocytes in culture: Fatal flaw or soluble problem? Stem Cells Dev. 2015;24:1035–52. https://doi.org/10.1089/scd.2014.0533.
Article
CAS
Google Scholar
Kamakura T, Makiyama T, Sasaki K, et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J. 2013;77:1307–14. https://doi.org/10.1253/circj.cj-12-0987.
Article
CAS
Google Scholar
Piccini I, Rao J, Seebohm G, et al. Human pluripotent stem cell-derived cardiomyocytes: Genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom Data. 2015;4:69–72. https://doi.org/10.1016/j.gdata.2015.03.008.
Article
Google Scholar
Wang L, Wada Y, Ballan N, et al. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2021;161:130–8. https://doi.org/10.1016/j.yjmcc.2021.08.005.
Article
CAS
Google Scholar
Feyen DAM, McKeithan WL, Bruyneel AAN, et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 2020;32: 107925. https://doi.org/10.1016/j.celrep.2020.107925.
Article
CAS
Google Scholar
Correia C, Koshkin A, Duarte P, et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep. 2017;7:8590. https://doi.org/10.1038/s41598-017-08713-4.
Article
CAS
Google Scholar
Yang X, Rodriguez M, Pabon L, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304. https://doi.org/10.1016/j.yjmcc.2014.04.005.
Article
CAS
Google Scholar
Abilez OJ, Tzatzalos E, Yang H, et al. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells. 2018;36:265–77. https://doi.org/10.1002/stem.2732.
Article
CAS
Google Scholar
Tiburcy M, Hudson JE, Balfanz P, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135:1832–47. https://doi.org/10.1161/CIRCULATIONAHA.116.024145.
Article
CAS
Google Scholar
Fong AH, Romero-Lopez M, Heylman CM, et al. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng Part A. 2016;22:1016–25. https://doi.org/10.1089/ten.TEA.2016.0027.
Article
CAS
Google Scholar
Herron TJ, Rocha AM, Campbell KF, et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ Arrhythm Electrophysiol. 2016;9: e003638. https://doi.org/10.1161/CIRCEP.113.003638.
Article
CAS
Google Scholar
Spater D, Hansson EM, Zangi L, et al. How to make a cardiomyocyte. Development. 2014;141:4418–31. https://doi.org/10.1242/dev.091538.
Article
CAS
Google Scholar
Wilson A, Schoenauer R, Ehler E, et al. Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci. 2014;71:165–81. https://doi.org/10.1007/s00018-013-1374-5.
Article
CAS
Google Scholar
Zhao Z, Lan H, El-Battrawy I, et al. Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int. 2018;2018:6067096. https://doi.org/10.1155/2018/6067096.
Article
CAS
Google Scholar
Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110:1446–51. https://doi.org/10.1073/pnas.1214608110.
Article
Google Scholar
Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102. https://doi.org/10.1126/science.1164680.
Article
CAS
Google Scholar
Smolich JJ. Ultrastructural and functional features of the developing mammalian heart: a brief overview. Reprod Fertil Dev. 1995;7:451–61. https://doi.org/10.1071/rd9950451.
Article
CAS
Google Scholar
Ramachandra CJA, Mehta A, Wong P, et al. Fatty acid metabolism driven mitochondrial bioenergetics promotes advanced developmental phenotypes in human induced pluripotent stem cell derived cardiomyocytes. Int J Cardiol. 2018;272:288–97. https://doi.org/10.1016/j.ijcard.2018.08.069.
Article
Google Scholar
Porter GA Jr, Hom J, Hoffman D, et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol. 2011;31:75–81. https://doi.org/10.1016/j.ppedcard.2011.02.002.
Article
Google Scholar
Palomer X, Barroso E, Zarei M, et al. PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta. 2016;1861:1569–78. https://doi.org/10.1016/j.bbalip.2016.01.019.
Article
CAS
Google Scholar
Lin B, Lin X, Stachel M, et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3’,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front Endocrinol (Lausanne). 2017;8:253. https://doi.org/10.3389/fendo.2017.00253.
Article
Google Scholar
Shi ST, Wu XX, Hao W, et al. Triiodo-L-thyronine promotes the maturation of cardiomyocytes derived from rat bone marrow mesenchymal stem cells. J Cardiovasc Pharmacol. 2016;67:388–93. https://doi.org/10.1097/FJC.0000000000000363.
Article
CAS
Google Scholar
Cini G, Carpi A, Mechanick J, et al. Thyroid hormones and the cardiovascular system: pathophysiology and interventions. Biomed Pharmacother. 2009;63:742–53. https://doi.org/10.1016/j.biopha.2009.08.003.
Article
CAS
Google Scholar
Parikh SS, Blackwell DJ, Gomez-Hurtado N, et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2017;121:1323–30. https://doi.org/10.1161/CIRCRESAHA.117.311920.
Article
CAS
Google Scholar
Yi CL, Si LJ, Xu J, et al. Effect and mechanism of asiatic acid on autophagy in myocardial ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med. 2020;20: 54. https://doi.org/10.3892/etm.2020.9182.
Article
CAS
Google Scholar
Lv J, Sharma A, Zhang T, et al. Pharmacological review on asiatic acid and its derivatives: a potential compound. SLAS Technol. 2018;23:111–27. https://doi.org/10.1177/2472630317751840.
Article
CAS
Google Scholar
Ma ZG, Dai J, Wei WY, et al. Asiatic acid protects against cardiac hypertrophy through activating ampka signalling pathway. Int J Biol Sci. 2016;12:861–71. https://doi.org/10.7150/ijbs.14213.
Article
CAS
Google Scholar
Bairwa SC, Parajuli N, Dyck JR. The role of AMPK in cardiomyocyte health and survival. Biochim Biophys Acta. 2016;1862:2199–210. https://doi.org/10.1016/j.bbadis.2016.07.001.
Article
CAS
Google Scholar
Duncan JG, Finck BN. The PPARalpha-PGC-1alpha axis controls cardiac energy metabolism in healthy and diseased myocardium. PPAR Res. 2008;2008: 253817. https://doi.org/10.1155/2008/253817.
Article
CAS
Google Scholar
Duncan JG. Peroxisome proliferator activated receptor-alpha (PPARalpha) and PPAR gamma coactivator-1alpha (PGC-1alpha) regulation of cardiac metabolism in diabetes. Pediatr Cardiol. 2011;32:323–8. https://doi.org/10.1007/s00246-011-9889-8.
Article
Google Scholar
Lee WJ, Kim M, Park HS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun. 2006;340:291–5. https://doi.org/10.1016/j.bbrc.2005.12.011.
Article
CAS
Google Scholar
Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun. 2004;313:277–86. https://doi.org/10.1016/j.bbrc.2003.11.127.
Article
CAS
Google Scholar
Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10:1245–50. https://doi.org/10.1038/nm1116.
Article
CAS
Google Scholar
Gilde AJ, van der Lee KAJM, Willemsen PHM, et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24. https://doi.org/10.1161/01.Res.0000060700.55247.7c.
Article
CAS
Google Scholar
Ding H, Xiong Y, Sun J, et al. Asiatic acid prevents oxidative stress and apoptosis by inhibiting the translocation of alpha-synuclein into mitochondria. Front Neurosci. 2018;12:431. https://doi.org/10.3389/fnins.2018.00431.
Article
Google Scholar
Lee KY, Bae ON, Serfozo K, et al. Asiatic acid attenuates infarct volume, mitochondrial dysfunction, and matrix metalloproteinase-9 induction after focal cerebral ischemia. Stroke. 2012;43:1632–8. https://doi.org/10.1161/Strokeaha.111.639427.
Article
CAS
Google Scholar
Krishnamurthy RG, Senut MC, Zemke D, et al. Asiatic acid, a pentacyclic triterpene from centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res. 2009;87:2541–50. https://doi.org/10.1002/jnr.22071.
Article
CAS
Google Scholar
Alvarez-Guardia D, Palomer X, Coll T, et al. PPARbeta/delta activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta. 2011;1811:59–67. https://doi.org/10.1016/j.bbalip.2010.11.002.
Article
CAS
Google Scholar
Dressel U, Allen TL, Pippal JB, et al. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol. 2003;17:2477–93. https://doi.org/10.1210/me.2003-0151.
Article
CAS
Google Scholar
Zizola C, Kennel PJ, Akashi H, et al. Activation of PPARdelta signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol. 2015;308:H1078–85. https://doi.org/10.1152/ajpheart.00679.2014.
Article
CAS
Google Scholar
Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics. 2019;9:7222–38. https://doi.org/10.7150/thno.32058.
Article
CAS
Google Scholar
Lin Y, Linask KL, Mallon B, et al. Heparin promotes cardiac differentiation of human pluripotent stem cells in chemically defined albumin-free medium, enabling consistent manufacture of cardiomyocytes. Stem Cells Transl Med. 2017;6:527–38. https://doi.org/10.5966/sctm.2015-0428.
Article
CAS
Google Scholar
Ruijter JM, Ruiz Villalba A, Hellemans J, et al. Removal of between-run variation in a multi-plate qPCR experiment. Biomol Detect Quantif. 2015;5:10–4. https://doi.org/10.1016/j.bdq.2015.07.001.
Article
CAS
Google Scholar
Chou SJ, Yu WC, Chang YL, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease. Int J Cardiol. 2017;232:255–63. https://doi.org/10.1016/j.ijcard.2017.01.009.
Article
Google Scholar
Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494:105–10. https://doi.org/10.1038/nature11799.
Article
CAS
Google Scholar
Cerignoli F, Charlot D, Whittaker R, et al. High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods. 2012;66:246–56. https://doi.org/10.1016/j.vascn.2012.08.167.
Article
CAS
Google Scholar
Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88:16–29. https://doi.org/10.1093/cvr/cvq237.
Article
CAS
Google Scholar
Xin T, Lv W, Liu D, et al. Opa1 reduces hypoxia-induced cardiomyocyte death by improving mitochondrial quality control. Front Cell Dev Biol. 2020;8:853. https://doi.org/10.3389/fcell.2020.00853.
Article
Google Scholar
Lopaschuk GD, Wall SR, Olley PM, et al. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988;63:1036–43. https://doi.org/10.1161/01.res.63.6.1036.
Article
CAS
Google Scholar
Divakaruni AS, Paradyse A, Ferrick DA, et al. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–54. https://doi.org/10.1016/B978-0-12-801415-8.00016-3.
Article
CAS
Google Scholar
Skorska A, Johann L, Chabanovska O, et al. Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci. 2022;79:149. https://doi.org/10.1007/s00018-022-04196-3.
Article
CAS
Google Scholar
Hirose K, Payumo AY, Cutie S, et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science. 2019;364:184–8. https://doi.org/10.1126/science.aar2038.
Article
CAS
Google Scholar
Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161:1566–75. https://doi.org/10.1016/j.cell.2015.05.026.
Article
CAS
Google Scholar
Adler CP. Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction. Recent Adv Stud Cardiac Struct Metab. 1975;8:373–86.
CAS
Google Scholar
Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev. 2016;96:253–73. https://doi.org/10.1016/j.addr.2015.12.023.
Article
CAS
Google Scholar
Otsuji TG, Minami I, Kurose Y, et al. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. Stem Cell Res. 2010;4:201–13. https://doi.org/10.1016/j.scr.2010.01.002.
Article
CAS
Google Scholar
Garg P, Garg V, Shrestha R, et al. Human induced pluripotent stem cell-derived cardiomyocytes as models for cardiac channelopathies: a primer for non-electrophysiologists. Circ Res. 2018;123:224–43. https://doi.org/10.1161/Circresaha.118.311209.
Article
CAS
Google Scholar
Krause U, Alflen C, Steinmetz M, et al. Characterization of maturation of neuronal voltage-gated sodium channels SCN1A and SCN8A in rat myocardium. Mol Cell Pediatr. 2015;2:5. https://doi.org/10.1186/s40348-015-0015-5.
Article
Google Scholar
Crestani T, Steichen C, Neri E, et al. Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochem Biophys Res Commun. 2020;533:376–82. https://doi.org/10.1016/j.bbrc.2020.09.021.
Article
CAS
Google Scholar
Buikema JW, Lee S, Goodyer WR, et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 2020;27:50–63. https://doi.org/10.1016/j.stem.2020.06.001.
Article
CAS
Google Scholar
Cheng CF, Ku HC, Lin H. PGC-1alpha as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19113447.
Article
Google Scholar
Kleiner S, Nguyen-Tran V, Bare O, et al. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem. 2009;284:18624–33. https://doi.org/10.1074/jbc.M109.008797.
Article
CAS
Google Scholar
Zhou Q, Xu H, Yan L, et al. PGC-1alpha promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes Dis. 2021;8:891–906. https://doi.org/10.1016/j.gendis.2020.12.006.
Article
CAS
Google Scholar
Bird SD, Doevendans PA, van Rooijen MA, et al. The human adult cardiomyocyte phenotype. Cardiovasc Res. 2003;58:423–34. https://doi.org/10.1016/s0008-6363(03)00253-0.
Article
CAS
Google Scholar
Sheehy SP, Pasqualini F, Grosberg A, et al. Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Reports. 2014;2:282–94. https://doi.org/10.1016/j.stemcr.2014.01.015.
Article
CAS
Google Scholar
Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114:511–23. https://doi.org/10.1161/CIRCRESAHA.114.300558.
Article
CAS
Google Scholar
Rana P, Anson B, Engle S, et al. Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci. 2012;130:117–31. https://doi.org/10.1093/toxsci/kfs233.
Article
CAS
Google Scholar
Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56:130–40. https://doi.org/10.1097/FJC.0b013e3181e74a14.
Article
CAS
Google Scholar
Horikoshi Y, Yan YS, Terashvili M, et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells. 2019;8:1095. https://doi.org/10.3390/cells8091095.
Article
CAS
Google Scholar
Gentillon C, Li D, Duan M, et al. Targeting HIF-1alpha in combination with PPARalpha activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2019;132:120–35. https://doi.org/10.1016/j.yjmcc.2019.05.003.
Article
CAS
Google Scholar
Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015;29:1981–91. https://doi.org/10.1101/gad.269894.115.
Article
CAS
Google Scholar
Xu MF, Xiong YY, Liu JK, et al. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012;33:578–87. https://doi.org/10.1038/aps.2012.3.
Article
CAS
Google Scholar
Luo C, Widlund HR, Puigserver P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer. 2016;2:619–31. https://doi.org/10.1016/j.trecan.2016.09.006.
Article
Google Scholar
Zhou Q, Xu H, Yan L, et al. PGC-1 alpha promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes Dis. 2021;8:891–906. https://doi.org/10.1016/j.gendis.2020.12.006.
Article
CAS
Google Scholar
Liu Q, Wu H, Luo Q-J, et al. Tyrosine kinase inhibitors induce mitochondrial dysfunction during cardiomyocyte differentiation through alteration of GATA4-mediated networks. bioRxiv:2020.05.04.077024. 2020. https://doi.org/10.1101/2020.05.04.077024
Caudal A, Ren L, Tu CY, et al. Human induced pluripotent stem cells for studying mitochondrial diseases in the heart. FEBS Lett. 2022;596:1735–45. https://doi.org/10.1002/1873-3468.14444.
Article
CAS
Google Scholar
Gaspar JA, Doss MX, Hengstler JG, et al. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res. 2014;114:1346–60. https://doi.org/10.1161/Circresaha.113.302021.
Article
CAS
Google Scholar
Ye L, Zhang X, Zhou Q, et al. Activation of AMPK promotes maturation of cardiomyocytes derived from human induced pluripotent stem cells. Front Cell Dev Biol. 2021;9: 644667. https://doi.org/10.3389/fcell.2021.644667.
Article
Google Scholar
Pour PA, Kenney MC, Kheradvar A. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes. J Am Heart Assoc. 2020;9: e014501. https://doi.org/10.1161/JAHA.119.014501.
Article
Google Scholar
Zhang HL, Alder NN, Wang W, et al. Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. Elife. 2020;9: e60827. https://doi.org/10.7554/eLife.60827.
Article
CAS
Google Scholar
Xu GY, Sun W, Guo X, et al. Asiatic acid promotes liver fatty acid metabolism in diabetic models. Int J Clin Exp Med. 2018;11:11837–45.
CAS
Google Scholar
Wen JY, Wei CY, Shah K, et al. Maturation-based model of arrhythmogenic right ventricular dysplasia using patient-specific induced pluripotent stem cells. Circ J. 2015;79:1402–8. https://doi.org/10.1253/circj.CJ-15-0363.
Article
CAS
Google Scholar
Lauzier B, Vaillant F, Merlen C, et al. Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. J Mol Cell Cardiol. 2013;55:92–100. https://doi.org/10.1016/j.yjmcc.2012.11.008.
Article
CAS
Google Scholar
Cao TT, Liccardo D, LaCanna R, et al. Fatty acid oxidation promotes cardiomyocyte proliferation rate but does not change cardiomyocyte number in infant mice. Front Cell Dev Biol. 2019;7: 42. https://doi.org/10.3389/fcell.2019.00042.
Article
Google Scholar
Jiang YH, Wang HL, Peng J, et al. Multinucleated polyploid cardiomyocytes undergo an enhanced adaptability to hypoxia via mitophagy. J Mol Cell Cardiol. 2020;138:115–35. https://doi.org/10.1016/j.yjmcc.2019.11.155.
Article
CAS
Google Scholar
Matsuyama D, Kawahara K. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth. Basic Res Cardiol. 2011;106:815–28. https://doi.org/10.1007/s00395-011-0178-8.
Article
CAS
Google Scholar
Becatti M, Taddei N, Cecchi C, et al. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci. 2012;69:2245–60. https://doi.org/10.1007/s00018-012-0925-5.
Article
CAS
Google Scholar