Moroni L, Hamann D, Paoluzzi L, Pieper J, de Wijn JR, van Blitterswijk CA. Regenerating articular tissue by converging technologies. PLoS One. 2008;3(8):e3032.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biophoenix. Opportunities in stem cell research and commercialisation. London: Business Insights; 2006. p. 80.
Google Scholar
Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, et al. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest. 2006;86(5):445–57.
Article
PubMed
CAS
Google Scholar
Ruszymah BHI, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al. Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage. Int J Pediatr Otorhinol. 2007;71(8):1225–34.
Article
CAS
Google Scholar
Bichara DA, O’Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18:51–61.
Article
PubMed
CAS
Google Scholar
Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302.
Article
PubMed
CAS
Google Scholar
Haisch A, Klaring S, Groger A, Gebert C, Sittinger M. A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol. 2002;259:316–21.
PubMed
Google Scholar
Horlock N, Vögelin E, Bradbury E, Grobbelaar AO, Gault DT. Psychosocial outcome of patients after ear reconstruction: a retrospective study of 62 patients. Ann Plast Surg. 2005;54(5):517–24.
Article
PubMed
CAS
Google Scholar
Jiamei D, Jiake C, Hongxing Z, Wanhou G, Yan W, Gaifen L. An investigation of psychological profiles and risk factors in congenital microtia patients. J Plast Reconstr Aesthet Surg. 2008;61:S37–43.
Article
PubMed
Google Scholar
Lourenco Gasques JA, JM P d G, Navarro Cruz EMT. Psychosocial effects of otoplasty in children with prominent ears. Aesth Plast Surg. 2008;32:910–4.
Article
Google Scholar
Steffen A, Magritz R, Frenzel H, Edwards T, Siegert R. Psychometric validation of the youth quality of life-facial differences questionnaire in patients following ear reconstruction with rib cartilage in microtia. Plast Reconstr Surg. 2012;129(1):184e–6e.
Article
PubMed
CAS
Google Scholar
Luquetti DV, Leonicini E, Mastroiacovo P. Microtia-anotia: a global review of prevalence rates. Birth Defects Res A Clin Mol Teratol. 2011;91:813–22.
Article
PubMed
CAS
PubMed Central
Google Scholar
Evans K. The remarkable surgery that enabled doctors to use cartilage from 10-year-old Olivia's rib to give her a new ear. 31 Dec 2011. http://www.dailymail.co.uk/health/article-2080722/The-remarkable-surgery-enabled-doctors-use-cartilage-10-year-old-Olivias-rib-new-ear.html. Accessed 6 Nov 2014.
Walsh F. Boy has ears created from ribs. 11 Aug 2014. http://www.bbc.co.uk/news/health-28746868. Accessed 6 Nov 2014.
Naik G. Science fiction comes alive as researchers grow organs in lab. 22 Mar 2013. http://www.wsj.com/news/articles/SB10001424127887323699704578328251335196648?mg=reno64-wsj&url=http%3A%2F%2Fonline.wsj.com%2Farticle%2FSB10001424127887323699704578328251335196648.html. Accessed 2 Dec 2014.
Dunham M. Britain makes a multimillion-dollar push towards lab-grown organs. 8 Apr 2014. http://www.nydailynews.com/life-style/health/noses-ears-blood-vessels-grow-britain-article-1.1749917. Accessed 2 Dec 2014.
Weller C. Scientists use stem cells to grow body parts in their lab, including noses, ears, and tear ducts. 8 Apr 2014. http://www.medicaldaily.com/scientists-use-stem-cells-grow-body-parts-their-lab-including-noses-ears-and-tear-ducts-275122. Accessed 2 Dec 2014.
Massey N. Doctors creating human ears using 3D printers hope to help children across the world. 5 Oct 2014. http://www.mirror.co.uk/news/uk-news/doctors-creating-human-ears-using-4382408. Accessed 2 Dec 2014.
Sivayoham E, Woolford TJ. Current opinion on auricular reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2012;20(4):287–90.
Article
PubMed
Google Scholar
Tanzer RC. Total reconstruction of the external ear. Plast Reconstr Surg. 1959;23:1.
Article
CAS
Google Scholar
Tanzer RC. Total reconstruction of the auricle: the evolution of a plan of treatment. Plast Reconstr Surg. 1971;47:523.
Article
PubMed
CAS
Google Scholar
Tanzer RC. Microtia: a long-term follow-up of 44 reconstructed auricles. Plast Reconstr Surg. 1978;61:161.
Article
PubMed
CAS
Google Scholar
Brent B. Technical advances in ear reconstruction with autogenous rib cartilage grafts: personal experience with 1200 cases. Plast Reconstr Surg. 1999;104:319.
Article
PubMed
CAS
Google Scholar
Brent B. The correction of microtia with autogenous cartilage grafts II: atypical and complex deformities. Plast Reconstr Surg. 1980;66:13.
Article
PubMed
CAS
Google Scholar
Brent B. The correction of microtia with autogenous cartilage grafts I: the classic deformity. Plast Reconstr Surg. 1980;66:1.
Article
PubMed
CAS
Google Scholar
Brent B, Byrd HS. Secondary ear reconstruction with cartilage grafts covered by axial, random, and free flaps of temporoparietal fascia. Plast Reconstr Surg. 1983;72:141.
Article
PubMed
CAS
Google Scholar
Brent B. Modification of the stages in total reconstruction of the auricle: Parts I to IV (Discussion). Plast Reconstr Surg. 1994;93:267.
Article
Google Scholar
Brent B. Auricular repair with autogenous rib cartilage grafts: two decades of experience with 600 cases. Plast Reconstr Surg. 1992;90:355.
Article
PubMed
CAS
Google Scholar
Park C, Lee TJ, Shin KS, et al. A single-stage two-flap method of total ear reconstruction. Plast Reconstr Surg. 1991;88:404.
Article
PubMed
CAS
Google Scholar
Park C, Chung S. A single-stage two-flap method for reconstruction of partial auricular defect. Plast Reconstr Surg. 1998;102(4):1175–81.
Article
PubMed
CAS
Google Scholar
Nagata S. A new method of total reconstruction of the auricle for microtia. Plast Reconstr Surg. 1993;92:187–201.
Article
PubMed
CAS
Google Scholar
Nagata S. Modification of the stages in total reconstruction of the auricle: part I. Grafting the three-dimensional costal cartilage framework for lobule-type microtia. Plast Reconstr Surg. 1994;93:221.
Article
PubMed
CAS
Google Scholar
Nagata S. Modification of the stages in total reconstruction of the auricle: part II. Grafting the three-dimensional costal cartilage framework for concha-type microtia. Plast Reconstr Surg. 1994;93:231.
Article
PubMed
CAS
Google Scholar
Nagata S. Modification of the stages in total reconstruction of the auricle: part III. Grafting the three-dimensional costal cartilage framework for small concha-type microtia. Plast Reconstr Surg. 1994;93:243.
Article
PubMed
CAS
Google Scholar
Nagata S. Modification of the stages in total reconstruction of the auricle: part IV. Ear elevation. Plast Reconstr Surg. 1994;93:254.
Article
PubMed
CAS
Google Scholar
Nagata S. Microtia: auricular reconstruction. In: Vanderkolk CA, editor. Plastic surgery: indications, operations, and outcomes, vol. 2. St. Louis, MO: Mosby; 2000. p. 1023–56.
Google Scholar
Firmin F. Ear reconstruction in cases of typical micro-tia: personal experience based on 352 microtic ear corrections. Scand J Plast Reconstr Surg Hand Surg. 1998;32:35.
Article
PubMed
CAS
Google Scholar
Cronin TD. Use of a silastic frame for total and subtotal reconstruction of the external ear: preliminary report. Plast Reconstr Surg. 1966;37:399.
Article
PubMed
CAS
Google Scholar
Cronin TD, Greenberg RL, Brauer RO. Follow-up study of silastic frame for reconstruction of external ear. Plast Reconstr Surg. 1968;42:522.
Article
PubMed
CAS
Google Scholar
Cronin TD, Ascough BM. Silastic ear construction. Clin Plast Surg. 1978;5:367.
PubMed
CAS
Google Scholar
Wellisz T. Reconstruction of the burned external ear using a Medpor porous polyethylene pivoting helix framework. Plast Reconstr Surg. 1993;91(5):811–8.
Article
PubMed
CAS
Google Scholar
Reinisch J. Microtia reconstruction using a polyethylene implant: an eight year surgical experience. Paper presented at the 1999 Annual Meeting of the American Association of Plastic Surgeons; 1999 May 5; Colorado Springs, CO.
Reinisch JF, Lewin S. Ear reconstruction using a porous polyethylene framework and temporoparietal fascia flap. Facial Plast Surg. 2009;25(3):181–9.
Article
PubMed
CAS
Google Scholar
Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006;12:691–703.
Article
PubMed
CAS
Google Scholar
Shieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials. 2004;25:1545–57.
Article
PubMed
CAS
Google Scholar
Siegert R, Magritz R. Reducing the morbidity involved in harvesting autogenous rib cartilage. Facial Plast Surg. 2009;25:169–74.
Article
PubMed
CAS
Google Scholar
Fukuda O, Yamada A. Reconstruction of the microtic ear with autogenous cartilage. Clin Plast Surg. 1978;5(3):351–66.
PubMed
CAS
Google Scholar
Avelar JM, Psillakis JM. Microtia: total reconstruction of the auricle in one single operation. Br J Plast Surg. 1981;34(2):224–7.
Article
PubMed
CAS
Google Scholar
Song Y, Song Y. An improved one-stage total ear reconstruction procedure. Plast Reconstr Surg. 1983;71:615.
Article
PubMed
CAS
Google Scholar
Park G, Wiseman JB, Clark W. Correction of congenital microtia using stereolithography for surgical planning. Plastic Reconstr Surg. 2000;105(4):1444–7.
CAS
Google Scholar
Nimeskern L, Feldmann EM, Kuo W, Schwarz S, Goldberg-Bockhorn E, Dürr S, et al. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery. PLoS One. 2014;9(8):e104975.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen ZC, Chen PK, Hung KF, Lo LJ, Chen YR. Microtia reconstruction with adjuvant 3-dimensional template model. Ann Plast Surg. 2004;53(3):282–7.
Article
PubMed
Google Scholar
Gillies H. Plastic surgery of the face. London: H. Frowde, Hodder & Sougton; 1920.
Google Scholar
Uppal RS, Sabbagh W, Chana J, Gault DT. Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plast Reconstr Surg. 2008;121(6):1949–55.
Article
PubMed
CAS
Google Scholar
Ohara K, Nakamura K, Ohta E. Chest wall deformities and thoracic scoliosis after cartilage graft harvesting. Plast Reconstr Surg. 1997;99:1030–6.
Article
PubMed
CAS
Google Scholar
Nagamizu H, Nagata S. Minimization of postoperative complications and problems at the donor site after costal cartilage resection. In: Harii K, editor. Plastic, reconstructive, and aesthetic surgery. Amsterdam: Kugler Publications; 1995. p. 423–4.
Google Scholar
Thomson HG, Kim TY, Ein SH. Residual problems in chest donor sites after microtia reconstruction: a long-term study. Plast Reconstr Surg. 1995;95(6):961–8.
Article
PubMed
CAS
Google Scholar
Kim YH, Namkung J, Lim BG, Min SH, Shin HW, Lim CH. Pleural effusion after microtia reconstructive surgery—a case report. Korean J Anesthesiol. 2011;61(2):166–8.
Article
PubMed
PubMed Central
Google Scholar
Moon BJ, Lee HJ, Jang YJ. Outcomes following rhinoplasty using autologous costal cartilage. Arch Facial Plast Surg. 2012;14(3):175–80.
Article
PubMed
Google Scholar
Wallace CG, Mao HY, Wang CJ, Chen YA, Chen PK, Chen ZC. Three-dimensional computed tomography reveals different donor-site deformities in adult and growing microtia patients despite total subperichondrial costal cartilage harvest and donor-site reconstruction. Plast Reconstr Surg. 2014;133(3):640.
Article
PubMed
CAS
Google Scholar
Zhang Q, Zhang R, Xu F, Jin P, Cao Y. Auricular reconstruction for microtia: personal 6-year experience based on 350 microtia ear reconstructions in China. Plast Reconstr Surg. 2009;123:849–58.
Article
PubMed
CAS
Google Scholar
Osorno G. Autogenous rib cartilage reconstruction of congenital ear defects: report of 110 cases with Brent's technique. Plast Reconstr Surg. 1999;104(7):1951–64.
Article
PubMed
CAS
Google Scholar
Osorno G. A 20-year experience with the Brent technique of auricular reconstruction: pearls and pitfalls. Plast Reconstr Surg. 2007;119(5):1447–63.
Article
PubMed
CAS
Google Scholar
Walton RL, Beahm EK. Auricular reconstruction for microtia: Part II. Surgical techniques. Plast Reconstr Surg. 2002;110:234–49.
Article
PubMed
Google Scholar
Hiroki M, Tanaka K, Umeda T, Hata Y. Ear reconstruction in elderly patients: a two-part helix method in a framework. Br J Plast Surg. 2002;55(7):589–91.
Google Scholar
Berghaus A, Toplak F. Surgical concepts for reconstruction of the auricle. Arch Otolaryngol Head Neck Surg. 1986;112:388–97.
Article
PubMed
CAS
Google Scholar
Fischer H, Gubisch W, Sinha V. Auricular reconstruction—our experience at marienhospital stuttgart, Germany. Indian J Otolaryngol Head Neck Surg. 2010;62(2):162–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beahm EK, Walton RL. Auricular reconstruction for microtia: Part I. Anatomy, embryology, and clinical evaluation. Plast Reconstr Surg. 2002;109(7):2472–82.
Google Scholar
Kawanabe Y, Nagata S. A new method of costal cartilage harvest for auricular reconstruction: part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plast Reconstr Surg. 2006;117:2011–8.
Article
PubMed
CAS
Google Scholar
Schubert O, Sartor K, Forsting M, Reisser C. Three-dimensional computed display of otosurgical operation sites by spiral CT. Neuroradiology. 1996;38(7):663–8.
Article
PubMed
CAS
Google Scholar
Britt JC, Park SS. Autogenous tissue-engineered cartilage: evaluation as an implant material. Arch Otolaryngol Head Neck Surg. 1998;124:671–7.
Article
PubMed
CAS
Google Scholar
Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, et al. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg. 1999;103:1111–9.
Article
PubMed
CAS
Google Scholar
Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8(2):e56506.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nimeskern L, van Osch GJVM, Müller R, Stok KS. Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage. Tissue Eng Part B Rev. 2013;20(1):17–27.
Article
PubMed
CAS
Google Scholar
Kamil SH, Vacanti MP, Aminuddin BS, Jackson MJ, Vacanti CA, Eavey RD. Tissue engineering of a human sized and shaped auricle using a mold. Laryngoscope. 2004;114:867.
Article
PubMed
CAS
Google Scholar
Christophel JJ, Chang JS, Park SS. Transplanted tissue-engineered cartilage. Arch Facial Plast Surg. 2006;8(2):117–22.
Article
PubMed
Google Scholar
Nayyer L, Patel KH, Esmaelli A. Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg. 2012;129(5):1123–37.
Article
PubMed
CAS
Google Scholar
Brommer H, Brama PAJ, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J. 2005;37(2):148–54.
Article
PubMed
CAS
Google Scholar
Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17(1):136–46.
Article
PubMed
Google Scholar
Nabzdyk C, Pradhan L, Molina J, Perin E, Paniagua D, Rosenstrauch D. Auricular chondrocytes—from benchwork to clinical applications. In Vivo. 2009;23(3):369–80.
PubMed
Google Scholar
Homicz MR, Schumacher BL, Sah RL, Watson D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol Head Neck Surg. 2002;127:398–408.
Article
PubMed
Google Scholar
Jian-Wei X, Randolph MA, Peretti GM, Nazzal JA, Roses RE, Morse KR, et al. Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium. Plastic Reconstr Surg. 2005;116(2):577–89.
Article
CAS
Google Scholar
Gonfiotti A, Jaus MO, Barale S, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.
Article
PubMed
Google Scholar
Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D. Tracheal Transplant Group. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010;362:138–45.
Article
PubMed
CAS
Google Scholar
Vogel G. Trachea transplants test the limits. Science. 2013;340:266–8.
Article
PubMed
CAS
Google Scholar
Ingber DE. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A. 2005;102:11571–2.
Article
PubMed
CAS
PubMed Central
Google Scholar
Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29(4):183–90.
Article
PubMed
CAS
Google Scholar
Birchall MA, Seifalian AM. Tissue engineering's green shoots of disruptive innovation. Lancet. 2014;384(9940):288–90.
Article
PubMed
Google Scholar
Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A. 2003;64:273–81.
Article
PubMed
CAS
Google Scholar
Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26:5158–66.
Article
PubMed
CAS
Google Scholar
Ho ST, Cool SM, Hui JH, Hutmacher DW. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2010;31:38–47.
Article
PubMed
CAS
Google Scholar
Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 2010;19:29–42.
Article
PubMed
Google Scholar
Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br. 2003;85:740–7.
PubMed
CAS
Google Scholar
Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27:91–9.
Article
PubMed
CAS
Google Scholar
Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15:231–41.
Article
PubMed
CAS
PubMed Central
Google Scholar
Raghunath J, Sutherland J, Salih V, Mordan N, Butler PE, Seifalian AM. Chondrogenic potential of blood-acquired mesenchymal progenitor cells. J Plast Reconstr Aesthet Surg. 2010;63:841–7.
Article
PubMed
Google Scholar
Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97.
Article
PubMed
CAS
Google Scholar
Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kobayashi S, Takebe T, Zheng Y-W, Mizuno M, Yabuki Y, Maegawa J, et al. Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One. 2011;6(10):e26393.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kobayashi S, Takebe T, Inui M, Iwai S, Kan H, Zheng YW, et al. Reconstruction of human elastic cartilage by a CD44 CD90 stem cell in the ear perichondrium. Proc Natl Acad Sci U S A. 2011;108:14479.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yanaga H, Imai K, Koga M, Yanaga K. Cell-engineered human elastic chondrocytes regenerate natural scaffold in vitro and neocartilage with neoperichondrium in the human body post-transplantation. Tissue Eng Part A. 2012;18(19–20):2020–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
van Osch GJ, van der Veen SW, Burger EH, Verwoerd-Verhoef HL. Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Eng. 2000;6:321–30.
Article
PubMed
Google Scholar
Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, et al. Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng A. 2014;20:303–12.
Article
CAS
Google Scholar
Xu JW, Zaporojan V, Peretti GM, Roses RE, Morse KB, Roy AK, et al. Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg. 2004;113:1361–71.
Article
PubMed
Google Scholar
Isogai N, Asamura S, Higashi T, Ikada Y, Morita S, Hillyer J, et al. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(L-lactide-epsilon-caprolactone) scaffolds. Tissue Eng. 2004;10:673–87.
Article
PubMed
CAS
Google Scholar
Semine AA, Damon A. Costochondral ossification and aging in five populations. Hum Biol. 1975;47(1):101–16.
PubMed
CAS
Google Scholar
Barchilon V, Hershkovitz I, Rothschild BM, Wish-Baratz S, Latimer B, Jellema LM, et al. Factors affecting the rate and pattern of the first costal cartilage ossification. Am J Forensic Med Pathol. 1996;17(3):239–47.
Article
PubMed
CAS
Google Scholar
Lau AG, Kindig MW, Kent RW. Morphology, distribution, mineral density and volume fraction of human calcified costal cartilage. Acta Biomater. 2011;7(3):1202–9.
Article
PubMed
CAS
Google Scholar
Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng A. 2011;17(11–12):1573–81.
Article
CAS
Google Scholar
Romo 3rd T, Morris LG, Reitzen SD, Ghossaini SN, Wazen JJ, Kohan D. Reconstruction of congenital microtia-atresia: outcomes with the Medpor/bone-anchored hearing aid-approach. Ann Plast Surg. 2009;62(4):384–9.
Article
PubMed
CAS
Google Scholar
Eyre DR, Dickson IR, Van Ness KP. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J. 1988;252:495–500.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bank RM, Bayliss FPJG, Lafeber AM, Tekoppele J. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. Biochem J. 1998;330:345–51.
Article
PubMed
CAS
PubMed Central
Google Scholar
Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21(5):872–80.
Article
PubMed
CAS
Google Scholar
Zopf DA, Flanagan CL, Nasser HB, Mitsak AG, Huq FS, Rajendran V, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–8.
Article
PubMed
Google Scholar
Khan IM, Evans SL, Young RD, Blain EJ, Quantock AJ, Avery N, et al. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis Rheum. 2011;63(11):3417–27.
Article
PubMed
CAS
Google Scholar
Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, et al. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34(5):1478–87.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tseng A. Extensively expanded auricular chondrocytes form neocartilage in vivo. Cartilage. 2014;5:241–51.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huey DJ, Sanchez-Adams J, Willard VP, Athanasiou KA. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells. Tissue Eng A. 2012;18(5–6):568–75.
Article
CAS
Google Scholar
Sterodimas A, de Faria J. Human auricular tissue engineering in an immunocompetent animal model. Aesthet Surg J. 2013;33(2):283–9.
Article
PubMed
Google Scholar
Markillie P. A third industrial revolution. 21 Apr 2012. http://www.economist.com/node/21552901. Accessed 9 Jan 2015.
Rozen WM, Ting JW, Baillieu C, Leong J. Stereolithographic modeling of the deep circumflex iliac artery and its vascular branching: a further advance in computed tomography-guided flap planning. Plast Reconstr Surg. 2012;130(2):380e–2e.
Article
PubMed
CAS
Google Scholar
Gerstle TL, Ibrahim AMS, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: three-dimensional printing. Plast Reconst Surg. 2014;133(2):446–51.
Article
PubMed
CAS
Google Scholar
Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):661–6.
Article
PubMed
Google Scholar
Melchels F, Wiggenhauser PS, Warne D, Barry M, Ong FR, Chong WS, et al. CAD/CAM-assisted breast reconstruction. Biofabrication. 2011;3(3):034114.
Article
PubMed
Google Scholar
Wang G, Li J, Khadka A, Hsu Y, Li W, et al. CAD/CAM and rapid prototyped titanium for reconstruction of ramus defect and condylar fracture caused by mandibular reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):356–61.
Article
PubMed
Google Scholar
The world’s first 3D printed total jaw reconstruction. June 2011. http://www.xilloc.com/patients/stories/total-mandibular-implant/. Accessed 9 Jan 2015.
Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18:MT1–6.
Article
PubMed
PubMed Central
Google Scholar
Manning L. Additive manufacturing used to create first laser-sintered cranial implant geometry. Adv Mater Processes. 2012;170(9):33–5.
Google Scholar
Lee H, Ahn S, Bonassar LJ, Kim G. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun. 2013;34(2):142–9.
Article
PubMed
CAS
Google Scholar
Shim J-H, Kim JY, Park M, Park J, Cho DW. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication. 2011;3(3):034102.
Article
PubMed
CAS
Google Scholar
Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5(3):035007.
Article
PubMed
CAS
Google Scholar
Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W, et al. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013;34(11):2624–31.
Article
PubMed
CAS
Google Scholar
Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater Weinheim. 2013;25(36):5011–28.
Article
PubMed
CAS
Google Scholar
Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux. Biofabrication. 2010;2(1):010201.
Article
PubMed
Google Scholar
Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng C Methods. 2012;18(1):62–70.
Article
CAS
Google Scholar
Melchels FPW, Dhert WJA, Hutmacher DW, Malda J. Development and characterization of a new bioink for additive tissue manufacturing. J Mater Chem B. 2014;2(16):2282–9.
Article
CAS
Google Scholar
Censi R, Schuurman W, Malda J, Hennink WE. Printable photopolymerizable thermosensitive p(HPMA-lactate)-PEG hydrogel as scaffold for tissue engineering. Adv Funct Mater. 2011;21(10):1833–42.
Article
CAS
Google Scholar
Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011;3(2):021001.
Article
PubMed
CAS
Google Scholar
Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13(5):551–61.
Article
PubMed
CAS
Google Scholar
Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.
Article
PubMed
CAS
Google Scholar
Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012;8(8):3027–34.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boere KMW, Visser J, Seyednejad H, Rahimian S, Gawlitta D, van Steenbergen MJ, et al. Covalent attachment of a 3D-printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014;10(6):2602–11.
Article
PubMed
CAS
Google Scholar