Aponte PM, et al. Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 2008;136(5):543–57.
Article
CAS
PubMed
Google Scholar
Morena AR, et al. Isolation of highly purified type A spermatogonia from prepubertal rat testis. J Androl. 1996;17(6):708–17.
CAS
PubMed
Google Scholar
Sadri-Ardekani H, et al. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302(19):2127–34.
Article
CAS
PubMed
Google Scholar
Liu S, et al. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol. 2011;9(1):1.
Article
CAS
Google Scholar
Kanatsu-Shinohara M, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.
Article
CAS
PubMed
Google Scholar
De Miguel MP, et al. Leukemia inhibitory factor and ciliary neurotropic factor promote the survival of Sertoli cells and gonocytes in coculture system. Endocrinology. 1996;137(5):1885–93.
Article
PubMed
Google Scholar
Meng X, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.
Article
CAS
PubMed
Google Scholar
Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod. 2004;71(3):722–31.
Article
CAS
PubMed
Google Scholar
Allard EK, Blanchard KT, Boekelheide K. Exogenous stem cell factor (SCF) compensates for altered endogenous SCF expression in 2,5-hexanedione-induced testicular atrophy in rats. Biol Reprod. 1996;55(1):185–93.
Article
CAS
PubMed
Google Scholar
Lee J, Boekelheide K, Blanchard KT. Leuprolide, a gonadotropin-releasing hormone agonist, reestablishes spermatogenesis after 2,5-hexanedione-induced irreversible testicular injury in the rat, resulting in normalized stem cell factor expression 1. Endocrinology. 1998;139(1):236–44.
Article
PubMed
Google Scholar
Kanatsu-Shinohara M, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119(7):1001–12.
Article
CAS
PubMed
Google Scholar
Kanatsu-Shinohara M, et al. Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol Reprod. 2005;72(4):985–91.
Article
CAS
PubMed
Google Scholar
Nagano M, et al. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod. 2003;68(6):2207–14.
Article
CAS
PubMed
Google Scholar
Mahaldashtian M, et al. In vitro effects of date palm (Phoenix dactylifera L.) pollen on colonization of neonate mouse spermatogonial stem cells. J Ethnopharmacol. 2016;186:362–8.
Article
PubMed
Google Scholar
Stukenborg JB, et al. Coculture of spermatogonia with somatic cells in a novel three dimensional soft agar culture system. J Androl. 2008;29(3):312–29.
Article
CAS
PubMed
Google Scholar
Eslahi N, et al. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Inter J Nanomedicine. 2013;8:4563.
Google Scholar
Elhija MA, et al. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2011;14:285–93.
Article
PubMed
PubMed Central
Google Scholar
Lin H, Kuhn C, Kuo T. The Clonal growth of hamster free alveolar cells in soft agar. J Exp Med. 1975;142(4):877–86.
Article
CAS
PubMed
Google Scholar
Horowitz D, King AG. Colorimetric determination of inhibition of hematopoietci progenitor cells in soft agar. J Immunol Methods. 2000;244(1):49–58.
Article
CAS
PubMed
Google Scholar
Anisimov VN, et al. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta. 2006;1757(5):573–89.
Article
CAS
PubMed
Google Scholar
Hardeland R, et al. Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350–84.
Article
CAS
PubMed
Google Scholar
Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
He C, et al. Melatonin to ameliorate its function and improve mitochondria synthesize mice oocyte’s quality under in vitro conditions. Inter J Mol Sci. 2016;17(6):939.
Article
Google Scholar
Cruz MHC, et al. Role of melatonin on production and preservation of gametes and embryos: a brief review. Anim Reprod Sci. 2014;145(3):150–60.
Article
CAS
PubMed
Google Scholar
Yang W-C, et al. Melatonin regulates the development and function of bovine sertoli cells via its receptors MT1 and MT2. Anim Reprod Sci. 2014;147(1):10–6.
Article
CAS
PubMed
Google Scholar
Chabra A et al. Melatonin ameliorates oxidative stress and reproductive toxicity induced by cyclophosphamide in male mice. Hum Exp Toxicol. 2014;33(2):185-95.
Liu Y, et al. Melatonin modulates acute testicular damage induced by carbon ions in r mice. Pharmazie. 2009;64(10):685.
CAS
PubMed
Google Scholar
Deng SL, et al. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res. 2016;60(4):435–47.
Article
CAS
PubMed
Google Scholar
Guan K, et al. Isolation and cultivation of stem cells from adult mouse testes. Nat Protoc. 2009;4(2):143–54.
Article
CAS
PubMed
Google Scholar
Rhee SG, et al. Methods for detection and measurement of hydrogen peroxide and outside of cells. Mol Cell. 2010;29(6):539–49.
Article
CAS
Google Scholar
Baazm M, et al. An iproved protocol for reprogramming isolation and culturing of mouse spermatogonial stem cells. Cell Program. 2013;15(4):329–36.
CAS
Google Scholar
Moriya T, et al. Melatonin influences the proliferative and differentiative activity of neural stem cells. J Pineal Res. 2007;42(4):411–8.
Article
CAS
PubMed
Google Scholar
Costa GM, et al. Spermatogonial stem cell markers and niche in equids. PLoS One. 2012;7(8):e44091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costoya JA, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 2004;36(6):653–9.
Article
CAS
PubMed
Google Scholar
Kumar TR. The quest for male germline stem cell markers: PAX7 gets ID’d. J Clinical Invest. 2014;124(10):4219–22.
Article
CAS
Google Scholar
Sun F, et al. Id4 marks spermatogonial stem cells in the mouse testis. Scientific reports. 2015;5:17594.
Khajavi N, et al. Role of somatic testicular cells during mouse spermatogenesis in three-dimensional collagen gel culture system. Cell J. 2014;16(1):79.
CAS
PubMed
PubMed Central
Google Scholar
Dym M, Kokkinaki M, He Z. Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res C Embryo Today. 2009;87(1):27–34.
Article
CAS
PubMed
Google Scholar
Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl. 2015;17(6):972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S-R, Liu Y-X. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by sertoli cell signaling. Reproduction. 2015;149(4):R159–67.
Article
CAS
PubMed
Google Scholar
Aliakbari F, et al. Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements. Cell Reprogram. 2016;18(2):87–95.
Article
CAS
PubMed
Google Scholar
Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004;101(47):16489–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebata KT, et al. Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro. Exp Cell Res. 2011;317(10):1319–29.
Article
CAS
PubMed
Google Scholar
Fukunaga N, et al. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram. 2010;12(4):369–76.
Article
CAS
PubMed
Google Scholar
Zanganeh BM, et al. Co-culture of spermatogonial stem cells with sertoli cells in the presence of testosterone and FSH improved differentiation via up-regulation of post meiotic genes. Acta Med Iran. 2013;51(1):1.
Google Scholar
Millán-Plano S, et al. Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Inte J Mol Sci. 2010;11(1):312–28.
Article
Google Scholar
Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology. 2010;278(1):55–67.
Article
CAS
PubMed
Google Scholar
Tan SS, et al. Melatonin protects human adipose-derived stem cells from oxidative stress and cell death. Archive Plastic Surg. 2016;43(3):237–41.
Article
Google Scholar
Maitra SK, Hasan KN. The role of melatonin as a hormone and an antioxidant in the control of fish reproduction. Front Endocrinol. 2016;7:38.
Murphy MP. How mitochondria produce reactive oxygen species. Biochemical J. 2009;417(1):1–13.
Article
CAS
Google Scholar
Morimoto H, et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell. 2013;12(6):774–86.
Article
CAS
PubMed
Google Scholar
Li B, et al. Melatonin ameliorates busulfan-induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxidant Redox Signal. 2017.
Gholami M, et al. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice. Iran J Basic Med Sci. 2014;17(2):93.
PubMed
PubMed Central
Google Scholar
Gholami M, et al. Effect of melatonin on the expression of apoptotic genes in vitrified-thawed spermatogonia stem cells type A of 6-day-old mice. Iran J Basic Med Sci. 2013;16(8):906–9.
PubMed
PubMed Central
Google Scholar
Bowen Niu BL, et al. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in sertoli cells. Oncotarget. 2016;7(47):77532.
PubMed
PubMed Central
Google Scholar
Boyer A, et al. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4. PLoS One. 2012;7(1):e29764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navid S, et al. In vitro effects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst Biol Reprod Med. 2017;5:1–12.
Mirzapour T, et al. Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia. 2013;45(1):26–34.
Article
CAS
PubMed
Google Scholar