Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections 2006;19:403–434.
Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33:405–13.
Article
PubMed
Google Scholar
Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32:395–401.
Article
CAS
PubMed
Google Scholar
Nejati R, Kovacic D, Slominski A. Neuro-immune-endocrine functions of the skin: An overview. Expert Rev Dermatol. 2013;8:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev. 2014;69–70:81–102. https://doi.org/10.1016/j.addr.2013.12.006.
Article
CAS
PubMed
Google Scholar
Fuchs E. Skin stem cells: rising to the surface. J Cell Biol. 2008;180:273–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arda O, Göksügür N, Tüzün Y. Basic histological structure and functions of facial skin. Clin Dermatol. 2014;32:3–13.
Article
PubMed
Google Scholar
Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: regeneration of the skin and its contents. Clin Plast Surg. 2017;44:635–50. https://doi.org/10.1016/j.cps.2017.02.020.
Article
PubMed
PubMed Central
Google Scholar
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.06.019.
Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol. 2018:0–2. https://doi.org/10.1111/exd.13674.
Han X, Bibb R, Harris R. Design of bifurcation junctions in artificial vascular vessels additively manufactured for skin tissue engineering. J Vis Lang Comput. 2015;28:238–49. https://doi.org/10.1016/j.jvlc.2014.12.005.
Article
Google Scholar
Pozzi A, Yurchenco PD, Iozzo RV. The nature and biology of basement membranes. Matrix Biol. 2017;57–58:1–11. https://doi.org/10.1016/j.matbio.2016.12.009.
Article
CAS
PubMed
Google Scholar
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci. 2010;67:2879–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caley MP, Martins VLC, O’Toole EA. Metalloproteinases and wound healing. Adv Wound Care. 2015;4:225–34. https://doi.org/10.1089/wound.2014.0581.
Article
Google Scholar
Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.
Article
CAS
PubMed
Google Scholar
Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene. 2007;391:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerqueira MT, Pirraco RP, Marques AP. Stem cells in skin wound healing: are we there yet? Adv Wound Care. 2016;5:164–75. https://doi.org/10.1089/wound.2014.0607.
Article
Google Scholar
Vary JC. Selected disorders of skin appendages-acne, alopecia, hyperhidrosis. Med Clin North Am. 2015;99:1195–211. https://doi.org/10.1016/j.mcna.2015.07.003.
Article
PubMed
Google Scholar
Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol. 2012;23:928–36. https://doi.org/10.1016/j.semcdb.2012.08.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu C, Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb Perspect Med. 2014;4(2):a015222.
Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia. 2006;11:187–203.
Article
PubMed
Google Scholar
Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on skin: mechanisms, recent advances and drug reviewing issues. J Food Drug Anal. 2017:1–7. https://doi.org/10.1016/j.jfda.2017.10.004.
Hermans MHE. A general overview of burn care; 2005. p. 2.
Google Scholar
Lorenti A. Wound healing: from epidermis culture to tissue engineering 2012;2012:17–29.
Wolfram D, Tzankov A, Pulzi P, Piza-Katzer H. Hypertrophic scars and keloids—a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg. 2009;35:171–81.
Article
CAS
PubMed
Google Scholar
Sakallioglu EA, Basaran O, Ozdemir BH, Arat Z, Yucel M, Haberal M. Local and systemic interactions related to serum transforming growth factor- b levels in burn wounds of various depths. Burns. 2006;32:980–5.
Article
PubMed
Google Scholar
Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Investig. 2008;88:579–90.
Article
CAS
PubMed
Google Scholar
Vinish M, Cui W, Stafford E, Bae L, Hawkins H, Cox R, et al. Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair Regen. 2016;24:6–13.
Article
PubMed
Google Scholar
Zhang X, Liu L, Wei X, Tan YS, Tong L, Chang R. Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1α heterozygous-null mice after burn wounding. Wound Repair Regen. 2014;18:193–201.
Article
Google Scholar
Fox A, Smythe J, Fisher N, Tyler MPH, Mcgrouther DA, Watt SM, et al. Mobilization of endothelial progenitor cells into the circulation in burned patients. Br J Surg. 2008;95:244–51.
Article
CAS
PubMed
Google Scholar
Foresta C, Schipilliti M, De Toni L, Magagna S, Lancerotto L, Azzena B, et al. Blood levels, apoptosis, and homing of the endothelial progenitor cells after skin burns and escharectomy. J TRAUMA Inj Infect Crit Care. 2011;70:459–65.
Article
Google Scholar
Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulie A. Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen. 2011;19:10–5.
Article
Google Scholar
Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing - review of the literature. Burns. 2005;31:944–56.
Article
PubMed
Google Scholar
Van De Water L, Varney S. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis : opportunities for new therapeutic intervention. Adv Wound Care. 2013;2:122–41.
Article
Google Scholar
Ghieh F, Jurjus R, Ibrahim A, Geagea AG, Daouk H, El BB, et al. The use of stem cells in burn wound healing: a review. Biomed Mater. 2015;2015:684084.
Google Scholar
Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015:1–12. https://doi.org/10.1186/s13054-015-0961-2.
Hampson P, Dinsdale ÃRJ, Wearn ÃCM, Bamford AL, Bishop ÃJRB, Hazeldine J, et al. Neutrophil dysfunction, immature granulocytes, and cell-free: a prospective observational cohort study. 2016;XX X.
Dunn JLM, Hunter RA, Cairns BA, Kartchner LB, Thurlow L, Maile R, et al. Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. J Leukoc Biol. 2016;2018:1–10.
Google Scholar
Kaufman T, Magosevich D, Moreno MC, Guzman MA, Atri LPD, Carestia A, et al. Nucleosomes and neutrophil extracellular traps in septic and burn patients. Clin Immunol. 2017;183:254–62. https://doi.org/10.1016/j.clim.2017.08.014.
Article
CAS
PubMed
Google Scholar
Trehan S. Plant stem cells in cosmetics : current trends and future directions; 2017.
Google Scholar
Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–58.
Article
CAS
PubMed
Google Scholar
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci. 2008;97:2892–923. https://doi.org/10.1002/jps.21210.
Article
CAS
PubMed
Google Scholar
Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing - a review. J Pharm Sci. 2015;104:3653–80.
Article
CAS
PubMed
Google Scholar
Clark RAF, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127:1018–29.
Article
CAS
PubMed
Google Scholar
Ohyama H, Nishimura F, Meguro M, Takashiba S, Murayama Y, Matsushita S. Counter-antigen presentation: fibroblasts produce cytokines by signalling through HLA class II molecules without inducing T-cell proliferation. Cytokine. 2002;17:175–81.
Article
CAS
PubMed
Google Scholar
Lim R. Fetal membranes in regenerative medicine : new tricks from an old dog ? Stem Cells Transl Med. 2017;6(9):1767–76.
Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev. 2017;36:32–41. https://doi.org/10.1016/j.arr.2017.02.005.
Article
CAS
PubMed
Google Scholar
Parekh A, Hebda PA. The contractile phenotype of dermal fetal fibroblasts in scarless wound healing. Curr Pathobiol Rep. 2017. https://doi.org/10.1007/s40139-017-0149-3.
Taghiabadi E, Beiki B, Aghdami N, Bajouri A. Amniotic membrane seeded fetal fibroblasts as skin substitute for wound regeneration. Methods Mol Biol. 2018;8:1–9.
Karr JC. Retrospective comparison of diabetic foot ulcer and venous stasis ulcer healing outcome between a dermal repair scaffold (PriMatrix) and a bilayered living cell therapy (Apligraf). Adv Skin Wound Care. 2011;24:119–25. https://doi.org/10.1097/01.ASW.0000395038.28398.88.
Article
PubMed
Google Scholar
Jadlowiec C, Brenes RA, Li X, Lv W, Protack CD, Collins MJ, et al. Stem cell therapy for critical limb ischemia: What can we learn from cell therapy for chronic wounds? Vascular. 2012;20:284–9.
Article
PubMed
PubMed Central
Google Scholar
Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29:837–41.
Article
PubMed
Google Scholar
Noordenbos J, Doré C, Hansbrough JF. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil. 1999;20:275–81.
Article
CAS
PubMed
Google Scholar
Purdue GF, Hunt JL, Still JMJ, Law EJ, Herndon DN, Goldfarb W, et al. A multicenter clinical trial of a biosynthetic skin replacement, dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil. 1997;18:52–7.
Article
CAS
PubMed
Google Scholar
Beumer GJ, van Blitterswijk CA, Bakker D, Ponec M. A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: a physico-chemical characterisation. Clin Mater. 1993;14:21–7.
Article
CAS
PubMed
Google Scholar
Uccioli L. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the TissueTech Autograft System. Int J Low Extrem Wounds. 2003;2:140–51. https://doi.org/10.1177/1534734603258480.
Article
CAS
PubMed
Google Scholar
Caravadggi C, De Giglio R, Pritelli C, Sommaria M, Dalla Noce S, Faglia E, et al. HYAFF 11 – based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal. Diabetes Care. 2003;26:2853–9.
Article
Google Scholar
Steinberg JS, Edmonds M, Hurley DP, King WN. Confirmatory data from EU study supports Apligraf for the treatment of neuropathic diabetic foot ulcers. J Am Podiatr Med Assoc. 2010;100:73–7 doi:100/1/73 [pii].
Article
PubMed
Google Scholar
Harding KG, Krieg T, Eming SA, Flour MLF, Jawien A, Cencora A, et al. Efficacy and safety of the freeze-dried cultured human keratinocyte lysate, LyphoDermTM 0.9%, in the treatment of hard-to-heal venous leg ulcers. Wound Repair Regen. 2005;13:138–47.
Article
PubMed
Google Scholar
Dieckmann C, Renner R, Milkova L, Simon JC. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol. 2010;19:697–706.
Article
CAS
PubMed
Google Scholar
Esteban-Vives R, Choi MS, Young MT, Over P, Ziembicki J, Corcos A, et al. Second-degree burns with six etiologies treated with autologous noncultured cell-spray grafting. Burns. 2016;42:e99–106.
Article
PubMed
Google Scholar
Moustafa M, Bullock AJ, Creagh FM, Heller S, Jeffcoate W, Game F, et al. Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers. Regen Med. 2007;2:887–902.
Article
PubMed
Google Scholar
Johnsen S, Ermuth T, Tanczos E, Bannasch H, Horch RE, Zschocke I, et al. Treatment of therapy-refractive ulcera cruris of various origins with autologous keratinocytes in fibrin sealant. Vasa - J Vasc Dis. 2005;34:25–9.
CAS
Google Scholar
Tausche AK, Skaria M, Böhlen L, Liebold K, Hafner J, Friedlein H, et al. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen. 2003;11:248–52.
Article
PubMed
Google Scholar
Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal stem cells in skin wound healing. Adv Wound Care. 2017;6:297–307. https://doi.org/10.1089/wound.2017.0728.
Article
Google Scholar
Lataillade JJ, Doucet C, Bey E, Carsin H, Huet C, Clairand I, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med. 2007;2:785–94.
Article
CAS
PubMed
Google Scholar
Kim K, Blasco-Morente G, Cuende N, Arias-Santiago S. Mesenchymal stromal cells: properties and role in management of cutaneous diseases. J Eur Acad Dermatology Venereol. 2017;31:414–23.
Article
CAS
Google Scholar
Maranda EL, Badiavas LR-M and , Badiavas EV Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds. Curr Stem Cell Res Ther. 2017;12:61–70. https://doi.org/10.2174/1574888X11666160714115926. http://www.eurekaselect.com/143959/article.
Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair Carrie. Stem Cells 2004;22:812–822.
Foubert P, Barillas S, Gonzalez AD. Uncultured adipose-derived regenerative cells ( ADRCs ) seeded in collagen scaffold improves dermal regeneration , enhancing early vascularization and structural organization followin ... ScienceDirect Uncultured adipose-derived regenerative cells ( ADRCs. Burns. 2015;41 1504–16.
Kølle ST, Fischer-nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival : a randomised placebo-controlled trial. Lancet. 2013;382:1113–20.
Article
PubMed
Google Scholar
Gentile P, De Angelis B, Pasin M, Cervelli ÞG, Curcio CB, Floris M, et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25:267–72.
Article
PubMed
Google Scholar
Abbas OL, Özatik O, Gönen ZB, Öğüt S, Özatik FY, Salkın H, et al. Comparative analysis of mesenchymal stem cells from bone marrow, adipose tissue, and dental pulp as sources of cell therapy for zone of stasis burns. J Investig Surg. 1939;2018:1–14.
Google Scholar
Abo-Elkheir W, Hamza F, Elmofty AM, Emam A, Abdl-Moktader M, Elsherefy S, et al. Role of cord blood and bone marrow mesenchymal stem cells in recent deep burn: a case-control prospective study. Am J Stem Cells. 2017;6:23–35 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675835/.
Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL, et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med. 2005;139:141–4.
Article
CAS
PubMed
Google Scholar
Zhang Y, Niu X, Dong X, Wang Y, Li H. Bioglass enhanced wound healing ability of urine-derived stem cells through promoting paracrine effects between stem cells and recipient cells. J Tissue Eng Regen Med. 2018;12:e1609–22.
Article
CAS
PubMed
Google Scholar
Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 2018;8:1607–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8:1–9.
Google Scholar
King A, Balaji S, Keswani SG, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care. 2014;3:614–25. https://doi.org/10.1089/wound.2013.0497.
Article
Google Scholar
Das SK, Yuan YF, Li MQ. An overview on current issues and challenges of endothelial progenitor cell-based neovascularization in patients with diabetic foot ulcer. Cell Reprogram. 2017;19:75–87. https://doi.org/10.1089/cell.2016.0050.
Article
CAS
PubMed
Google Scholar
Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29:369–76.
Article
CAS
PubMed
Google Scholar
Balañá ME. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells. 2015;7:711. https://doi.org/10.4252/wjsc.v7.i4.711.
Article
PubMed
PubMed Central
Google Scholar
Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12:1397–402.
Article
CAS
PubMed
Google Scholar
De Luca M, Pellegrini G, Green H. Regeneration of squamous epithelia from stem cells of cultured grafts. Regen Med. 2006;1:45–57.
Article
PubMed
Google Scholar
Suzuki D, Senoo M. Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors. J Invest Dermatol. 2012;132:2461–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, et al. P63 identifies keratinocyte stem cells. Proc Natl Acad Sci. 2001;98:3156–61. https://doi.org/10.1073/pnas.061032098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris ML, Buac K, Shakhova O, Hakami RM, Wegner M, Sommer L, et al. A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors. PLoS Genet. 2013;9:e1003644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature. 2005;433:884–7.
Article
CAS
PubMed
Google Scholar
Osawa M. Molecular characterization of melanocyte stem cells in their niche. Development. 2005;132:5589–99.
Article
CAS
PubMed
Google Scholar
Liu Y, Lyle S, Yang Z, Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol. 2003;121:963–8.
Article
CAS
PubMed
Google Scholar
Jaks V, Barker N, Kasper M, Van Es JH, Snippert HJ, Clevers H, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9.
Article
CAS
PubMed
Google Scholar
Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellheyer K, Krahl D. PHLDA1 (TDAG51) is a follicular stem cell marker and differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma. Br J Dermatol. 2011;164:141–7.
Article
CAS
PubMed
Google Scholar
Shi C, Mai Y, Cheng T. Identification of hematopoietic cell populations from the dermal papillae of human hair follicles. Transplant Proc. 2004;36:3208–11.
Article
CAS
PubMed
Google Scholar
Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126:597–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garzón I, Miyake J, González-Andrades M, Carmona R, Carda C, Sánchez-Quevedo Mdel C, et al. Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med. 2013;2:625–32. https://doi.org/10.5966/sctm.2012-0157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development. 2009;136:2815–23. https://doi.org/10.1242/dev.038620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichiro MS, Ishikawa O. Mesenchymal stem cells: the roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci. 2017;86:83–9. https://doi.org/10.1016/j.jdermsci.2016.11.005.
Article
CAS
Google Scholar
Marfia G, Navone SE, Di Vito C, Ughi N, Tabano S, Miozzo M, et al. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis. 2015;11:183–206.
Article
PubMed
PubMed Central
Google Scholar
Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3:248–69.
PubMed
PubMed Central
Google Scholar
Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–84. https://doi.org/10.1634/stemcells.22-3-377.
Article
PubMed
Google Scholar
Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res. 2011;2011:1–14. https://doi.org/10.1155/2011/207326.
Article
Google Scholar
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25.
Article
CAS
PubMed
Google Scholar
Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma OK-F, Chan KH. Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells. 2016;8:268. https://doi.org/10.4252/wjsc.v8.i9.268.
Article
PubMed
PubMed Central
Google Scholar
Condé-Green A, Marano A, Lee E, Reisler T, Price L, Milner S, et al. Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plast Reconstr Surg. 2016;137:302–12.
Article
PubMed
CAS
Google Scholar
Chang Y, Wu Y, Huang S, Wang HD. Autologous and not allogeneic adipose- derived stem cells improve acute burn wound healing. PLoS One. 2018;13(5):1–16.
Foubert P, Liu M, Anderson S, Rajoria R, Gutierrez D, Zafra D, et al. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells ( ADRCs ) in the treatment of severe thermal burns using a porcine model. Burns. 2018:2–13. https://doi.org/10.1016/j.burns.2018.05.006.
Foubert P, Gonzalez AD, Teodosescu S, Berard F, Doyle-Eisele M, Yekkala K, et al. Adipose-derived regenerative cell therapy for burn wound healing: a comparison of two delivery methods. Adv Wound Care. 2016;5:288–98. https://doi.org/10.1089/wound.2015.0672.
Article
Google Scholar
Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014:1–9. https://doi.org/10.1016/j.burns.2014.01.023.
Prasai A, El Ayadi A, Mifflin RC, Wetzel MD, Andersen CR, Redl H, et al. Characterization of adipose-derived stem cells following burn injury. Stem Cell Rev Rep. 2017;13:781–92.
Article
CAS
PubMed
Google Scholar
Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells. 2004;22:487–500. https://doi.org/10.1634/stemcells.22-4-487.
Article
PubMed
Google Scholar
Petrof G, Abdul-Wahab A, McGrath JA. Cell therapy in dermatology. Cold Spring Harb Perspect Med. 2014;4(6):a015156. doi: https://doi.org/10.1101/cshperspect.a015156.
Chino T, Tamai K, Yamazaki T, Otsuru S, Kikuchi Y, Nimura K, et al. Bone marrow cell transfer into fetal circulation can ameliorate genetic skin diseases by providing fibroblasts to the skin and inducing immune tolerance. Am J Pathol. 2008;173:803–14. https://doi.org/10.2353/ajpath.2008.070977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581–7. https://doi.org/10.4049/jimmunol.180.4.2581.
Article
CAS
PubMed
Google Scholar
Hu X, Zhou Y, Dong K, Sun Z, Zhao D, Wang W, et al. Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells. Cell Physiol Biochem. 2014;33:1802–14.
Article
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
Article
CAS
PubMed
Google Scholar
Vangipuram M, Ting D, Kim S, Diaz R, Schüle B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp. 2013:9–11. https://doi.org/10.3791/3779.
Hewitt KJ, Shamis Y, Hayman RB, Margvelashvili M, Dong S, Carlson MW, et al. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. PLoS One. 2011;6(2):e17128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilousova G, Chen J, Roop DR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol. 2011;131:857–64. https://doi.org/10.1038/jid.2010.364.
Article
CAS
PubMed
Google Scholar
Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, et al. Generation of human melanocytes from induced pluripotent stem cells. PLoS One. 2011;6:1–10.
Google Scholar
Hewitt KJ, Shamis Y, Knight E, Smith A, Maione A, Alt-Holland A, et al. PDGFR expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation. J Cell Sci. 2012;125:2276–87. https://doi.org/10.1242/jcs.099192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Takahara M, Kido M, Takeuchi S, Uchi H, Tu Y, et al. Increased expression of an epidermal stem cell marker, cytokeratin 19, in cutaneous squamous cell carcinoma. Br J Dermatol. 2008;159:952–5.
Article
CAS
PubMed
Google Scholar
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743–5. https://doi.org/10.1038/nbt.1554.
Article
CAS
PubMed
Google Scholar
Kim H, Kong WH, Seong KY, Sung DK, Jeong H, Kim JK, et al. Hyaluronate - epidermal growth factor conjugate for skin wound healing and regeneration. Biomacromolecules. 2016;17:3694–705.
Article
CAS
PubMed
Google Scholar
Gainza G, Bonafonte DC, Moreno B, Aguirre JJ, Gutierrez FB, Villullas S, et al. The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release. 2015;197:41–7. https://doi.org/10.1016/j.jconrel.2014.10.033.
Article
CAS
PubMed
Google Scholar
Geer DJ, Swartz DD, Andreadis ST. Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol. 2005;167:1575–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puolakkainen P, Twardzik D, Ranchalis J, Pankey S, Reed M, Gombotz W. The enhancement in wound healing by transforming growth factor-β1 (TGF-β1) depends on the topical delivery system. J Surg Res. 1995;58:321–9.
Article
CAS
PubMed
Google Scholar
Kojima K, Ignotz RA, Kushibiki T, Tinsley KW, Tabata Y, Vacanti CA. Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor β2 released from biodegradable microspheres in a nude rat recipient. J Thorac Cardiovasc Surg. 2004;128:147–53.
Article
CAS
PubMed
Google Scholar
Xiao Z, Xi C. Hepatocyte growth factor reduces hypertrophy of skin scar: in vivo study. Adv Ski Wound Care. 2013;26:266–70.
Article
Google Scholar
Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor : implications for tissue engineering and wound healing. Artif Organs. 2001;25:558–65.
Article
CAS
PubMed
Google Scholar
Wieman TJ, Smiell JM, Su Y. Efficacy and safely of a topical gel (becaplermin) in patients with chronic platelet-derived growth factor-BB formulation of recombinant human neuropathic diabetic ulcers. Diabetes Care. 1998;21:822–7.
Article
CAS
PubMed
Google Scholar
Li M, Qiu L, Hu W, Deng X, Xu H, Cao Y, et al. Genetically-modified bone mesenchymal stem cells with TGF-β3improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res. 2018;367:24–9. https://doi.org/10.1016/j.yexcr.2018.02.006.
Article
CAS
PubMed
Google Scholar
Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials. 2011;32:4243–54. https://doi.org/10.1016/j.biomaterials.2011.02.042.
Article
CAS
PubMed
Google Scholar
Ogino S, Morimoto N, Sakamoto M, Jinno C, Sakamoto Y, Taira T, et al. Efficacy of the dual controlled release of HGF and bFGF impregnated with a collagen/gelatin scaffold. J Surg Res. 2018;221:173–82. https://doi.org/10.1016/j.jss.2017.08.051.
Article
CAS
PubMed
Google Scholar
Suzuki S, Morimoto N, Ikada Y. Gelatin gel as a carrier of platelet-derived growth factors. J Biomater Appl. 2013;28:595–606.
Article
CAS
PubMed
Google Scholar
Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014;10:4156–66. https://doi.org/10.1016/j.actbio.2014.05.001.
Article
CAS
PubMed
Google Scholar
Lee JH, Bae IH, Choi JK, Park JW. Evaluation of a highly skin permeable low-molecular-weight protamine conjugated epidermal growth factor for novel burn wound healing therapy. J Pharm Sci. 2013;102:4109–20.
Article
CAS
PubMed
Google Scholar
Li JF, Duan HF, Wu CT, Zhang DJ, Deng Y, Yin HL, et al. HGF accelerates wound healing by promoting the dedifferentiation of epidermal cells through β 1 -Integrin/ILK pathway. Biomed Res Int. 2013;2013:470418.
PubMed
Google Scholar
Yoshida S, Yamaguchi Y, Itami S, Yoshikawa K, Tabata Y, Matsumoto K, et al. Neutralization of hepatocyte growth factor leads to retarded cutaneous wound healing associated with decreased neovascularization and granulation tissue formation. J Invest Dermatol. 2003;120:335–43. https://doi.org/10.1046/j.1523-1747.2003.12039.x.
Article
CAS
PubMed
Google Scholar
Shin JU, Kang SW, Jeong JJ, Nam KH, Chung WY, Lee JH. Effect of recombinant human epidermal growth factor on cutaneous scar quality in thyroidectomy patients. J Dermatolog Treat. 2015;26:159–64.
Article
CAS
PubMed
Google Scholar
Yang S, Geng Z, Ma K, Sun X, Fu X. Efficacy of topical recombinant human epidermal growth factor for treatment of diabetic foot ulcer: a systematic review and meta-analysis. Int J Low Extrem Wounds. 2016;15:120–5.
Article
PubMed
Google Scholar
Dermidova Rice TN, IM HMRH. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Ski Wound Care. 2012;25:349–70.
Article
Google Scholar
Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM, et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care. 2008;17:30–7. https://doi.org/10.12968/jowc.2008.17.1.27917.
Article
CAS
PubMed
Google Scholar
Tan Q, Chen B, Yan X, Lin Y, Xiao Z, Hou X, et al. Promotion of diabetic wound healing by collagen scaffold with collagen-binding vascular endothelial growth factor in a diabetic rat model. J Tissue Eng Regen Med. 2014;8:195–201.
Article
CAS
PubMed
Google Scholar
Gorkun AA, Shpichka AI, Zurina IM, Koroleva AV, Kosheleva NV, Nikishin DA, et al. Angiogenic potential of spheroids from umbilical cord and adipose-derived multipotent mesenchymal stromal cells within fibrin gel. Biomed Mater. 2018;13(4):044108.
Article
CAS
PubMed
Google Scholar
Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, et al. Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem. 2015;36:1–23.
Article
CAS
PubMed
Google Scholar
Ferguson MWJ, O’Kane S. Scar-free healing: From embryonic mechanism to adult therapeutic intervention. Philos Trans R Soc B Biol Sci. 2004;359:839–50.
Article
CAS
Google Scholar
Walraven M, Akershoek JJ, Beelen RHJ, Ulrich MMW. In vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and produce a fibrotic-like environment upon stimulation with TGF-β1: is there a thin line between fetal scarless healing and fibrosis? Arch Dermatol Res. 2017;309:111–21.
Article
CAS
PubMed
Google Scholar
Walraven M, Gouverneur M, Middelkoop E, Beelen RHJ, Ulrich MMW. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen. 2014;22:3–13.
Article
PubMed
Google Scholar
So K, McGrouther DA, Bush JA, Durani P, Taylor L, Skotny G, et al. Avotermin for scar improvement following scar revision surgery: a randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast Reconstr Surg. 2011;128:163–72.
Article
CAS
PubMed
Google Scholar
McCollum PT, Bush JA, James G, Mason T, O’Kane S, McCollum C, et al. Randomized phase II clinical trial of avotermin versus placebo for scar improvement. Br J Surg. 2011;98:925–34.
Article
CAS
PubMed
Google Scholar
Occleston NL, O’Kane S, Laverty HG, Cooper M, Fairlamb D, Mason T, et al. Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring. Wound Repair Regen. 2011;19(SUPPL. 1):s38–48.
Article
PubMed
Google Scholar
Park J, Hwang S, Yoon I. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22:1–20.
Google Scholar
Mccrudden TC, Mcalister E, Courtenay AJ, Gonz P, Singh R, Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol. 2015;24:561–6.
Article
PubMed
Google Scholar
Hogan NC, Taberner AJ, Jones LA, Ian W, Hogan NC, Taberner AJ, et al. Delivery needle-free delivery of macromolecules through the skin using controllable jet injectors. Expert Opin Drug Deliv. 2015;5247:1637–48.
Article
CAS
Google Scholar
Infanger M, Schmidt O, Kossmehl P, Grad S, Ertel W, Grimm D. Vascular endothelial growth factor serum level is strongly enhanced after burn injury and correlated with local and general tissue edema. Burns. 2004;30:305–11.
Article
PubMed
Google Scholar
Lian N, Li T. Growth factor pathways in hypertrophic scars : Molecular pathogenesis and therapeutic implications. Biomed Pharmacother. 2016;84:42–50. https://doi.org/10.1016/j.biopha.2016.09.010.
Article
CAS
PubMed
Google Scholar
Jakowlew SB. Transforming growth factor- β in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.
Lal Goel H. Mercurio AM. VEGF targets the tumour cell. 2014;13:871–82.
Google Scholar
Berlanga-acosta J, Gavilondo-cowley J, Pedro L, Castro-santana MD, Ernesto L, Herrera-martinez L. Epidermal growth factor in clinical practice – a review of its biological actions , clinical indications and safety implications. Int Wound J. 2009;6:331–46.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang T, He J, Dong J. Growth factor therapy in patients with partial-thickness burns : a systematic review and meta-analysis. Int Wound J. 2014;13(3):1–13.
Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41:837–43.
Article
PubMed
Google Scholar
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21:243–8.
Article
CAS
PubMed
Google Scholar
Juhasz I, Kiss B, Lukacs L, Erdei I, Peter Z, Remenyik E. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol Res Pract. 2010;2010:210150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landsman AS, Cook J, Cook E, Landsman AR, Garett P, Yoon J, et al. A retrospective clinical study to examine the effectiveness of 188 consecutive patients allograft (TheraSkin) on the cryopreserved human skin of a biologically active treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec. 2011;4:29–41.
Article
PubMed
Google Scholar
MacLeod TM, Cambrey A, Williams G, Sanders R, Green CJ. Evaluation of PermacolTM as a cultured skin equivalent. Burns. 2008;34:1169–75.
Article
CAS
PubMed
Google Scholar
Papadogeorgakis N, Petsinis V, Christopoulos P, Mavrovouniotis N, Alexandridis C. Use of a porcine dermal collagen graft (Permacol) in parotid surgery. Br J Oral Maxillofac Surg. 2009;47:378–81.
Article
PubMed
Google Scholar
Troy J, Karlnoski R, Downes K, Brown KS, Cruse CW, Smith DJ, et al. The use of EZ Derm® in partial-thickness burns: an institutional review of 157 patients. Eplasty. 2013;13:e14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593337/.
PubMed
PubMed Central
Google Scholar
Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter postapproval clinical trial of Integra® Dermal Regeneration Template for burn treatment. J Burn Care Rehabil. 2003;24:42–8.
Article
PubMed
Google Scholar
Eo S, Kim Y, Cho S. Vacuum-assisted closure improves the incorporation of artificial dermis in soft tissue defects: Terudermis®and Pelnac®. Int Wound J. 2011;8:261–7.
Article
PubMed
PubMed Central
Google Scholar
Soejima K, Shimoda K, Kashimura T, Yamaki T, Kono T, Sakurai H, et al. One-step grafting procedure using artificial dermis and split-thickness skin in burn patients. Eur J Plast Surg. 2013;36:585–90.
Article
Google Scholar
Widjaja W, Maitz P. The use of dermal regeneration template (Pelnac®) in acute full-thickness wound closure: a case series. Eur J Plast Surg. 2016;39:125–32.
Article
Google Scholar
Lesher A, Curry R, Evans J, Smith V, FItzgerald M, Cina R, et al. Effectiveness of Biobrane for treatment of partial-thickness burns in children. J Pediatr Surg. 2011;46:1759–63.
Article
PubMed
PubMed Central
Google Scholar
Lam PK, Chan ESY, To EWH, Lau CH, Yen SC, King WWK. Development and evaluation of a new composite Laserskin graft. J Trauma Acute Care Surg. 1999;47 https://insights.ovid.com/pubmed?pmid=10568722. Accessed 11 Mar 2019.
Gravante G, Delogu D, Giordan N, Morano G, Montone A, Esposito G. The use of hyalomatrix PA in the treatment of deep partial-thickness burns. J Burn Care Res. 2007;28:269–74.
Article
PubMed
Google Scholar
Roh DH, Kang SY, Kim JY, Kwon YB, Hae YK, Lee KG, et al. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Mater Sci Mater Med. 2006;17:547–52.
Article
CAS
PubMed
Google Scholar
Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res - Part A. 2006;76:431–8.
Article
CAS
Google Scholar
Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013;92:1432–42. https://doi.org/10.1016/j.carbpol.2012.10.071.
Article
CAS
PubMed
Google Scholar
Harding K, Sumner M, Cardinal M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int Wound J. 2013;10:132–7.
Article
PubMed
PubMed Central
Google Scholar
Gundy S, Manning G, O’Connell E, Ellä V, Harwoko MS, Rochev Y, et al. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold. Acta Biomater. 2008;4:1734–44.
Article
CAS
PubMed
Google Scholar
Zurina I, Shpichka A, Saburina I, Kosheleva N, Gorkun A, Grebenik E, et al. 2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro. Biomed Mater. 2018;13:054104.
Article
CAS
PubMed
Google Scholar
Sun G, Shen YI, Harmon JW. Engineering pro-regenerative hydrogels for scarless wound healing. Adv Healthc Mater. 2018;1800016:1–12.
Google Scholar
Rippon MG, Ousey K, Cutting KF. Wound healing and hyper-hydration: a counterintuitive model. J Wound Care. 2016;25:68–75.
Article
CAS
PubMed
Google Scholar
Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater. 2017;64:176–86. https://doi.org/10.1016/j.actbio.2017.10.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Shi J, Zhang M, Chen Y, Wang X, Zhang L, et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep. 2015;5:1–12. https://doi.org/10.1038/srep18104.
Article
CAS
Google Scholar
Lei Z, Singh G, Min Z, Shixuan C, Xu K, Pengcheng X, et al. Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. Mater Sci Eng C. 2018;90:159–67. https://doi.org/10.1016/j.msec.2018.04.045.
Article
CAS
Google Scholar
Zhou Y, Gao L, Peng J, Xing M, Han Y, Wang X, et al. Bioglass activated albumin hydrogels for wound healing. Adv Healthc Mater. 2018;1800144:1–13.
Google Scholar
Greiser U, Dong Y, Wang F, Tai H, Liu W. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018. https://doi.org/10.1016/j.actbio.2018.05.039.
Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal – epidermal skin substitutes. J Biomed Mater Res Part A. 2007;84(4):1078–86
Huang S, Zhang Y, Tang L, Deng Z, Lu W, Feng F, et al. Functional bilayered skin substitute constructed and microsphere-incorporated gelatin hydrogel. TISSUE Eng Part A. 2009;15:2617–24.
Article
CAS
PubMed
Google Scholar
Krasna M, Planinsek F, Knezevic M, Arnez ZM, Jeras M. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm. 2005;291:31–7.
Article
CAS
PubMed
Google Scholar
Mohd Hilmi AB, Halim AS, Jaafar H, Asiah AB, Hassan A. Chitosan dermal substitute and Chitosan skin substitute contribute to accelerated full-thickness wound healing in irradiated rats. Biomed Res Int. 2013;2013:795458.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang Y, Zhang X, Xu L, Wei S, Zhai M. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation. J Biomater Sci Polym Ed. 2015;26:162–80.
Article
PubMed
CAS
Google Scholar
Sun G, Shen YI, Ho CC, Kusuma S, Gerecht S. Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res - Part A. 2010;93:1080–90.
Google Scholar
Vanstraelen P. Comparison of calcium sodium alginate (KALTOSTAT) and porcine xenograft (E-Z DERM) in the healing of split-thickness skin graft donor sites. Burns. 1992;18:145–8.
Article
CAS
PubMed
Google Scholar
Salbach J, Rachner TD, Franz S, Simon J, Hofbauer LC. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med. 2012;90:625–35.
Article
PubMed
Google Scholar
Cecelia C, Whaley D, Babu R, Zhang J. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse models. Biomaterials. 2008;28:3977–86.
Google Scholar
Casper C, Yamaguchi N, Kiick K, Rabolt J. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules. 2005;6:1998–2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9:015006. https://doi.org/10.1088/1758-5090/9/1/015006.
Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20:473–84. https://doi.org/10.1089/ten.tec.2013.0335.
Article
CAS
PubMed
Google Scholar
Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers; 2007. p. 1123–8.
Google Scholar
Binder KW, Zhao W, Aboushwareb T, Dice D, Atala A, Yoo JJ. In situ bioprinting of the skin for burns. J Am Coll Surg. 2010;211:S76. https://doi.org/10.1016/j.jamcollsurg.2010.06.198.
Article
Google Scholar
Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allouni A, Papini R, Lewis D. Spray-on-skin cells in burns: a common practice with no agreed protocol. Burns. 2013;39:1391–4. https://doi.org/10.1016/j.burns.2013.03.017.
Article
PubMed
Google Scholar
Esteban-Vives R, Corcos A, Choi MS, Young MT, Over P, Ziembicki J, et al. Cell-spray auto-grafting technology for deep partial-thickness burns: Problems and solutions during clinical implementation. Burns. 2018;44:549–59. https://doi.org/10.1016/j.burns.2017.10.008.
Article
PubMed
Google Scholar
Nicholas MN, Yeung J. Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg. 2017;21:23–30.
Article
PubMed
Google Scholar
Oryan A, E. Alemzadeh AM. Burn wound healing: present concepts, treatment strategies and future directions. Wound Care. 2017;26:5–19.
Article
CAS
Google Scholar
Metcalfe AD, Ferguson MWJ. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials. 2007;28:5100–13.
Article
CAS
PubMed
Google Scholar
El-Serafi AT, El-Serafi IT, Elmasry M, Steinvall I, Sjöberg F. Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation. 2017;96:26–9.
Article
CAS
PubMed
Google Scholar
Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, et al. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J. 2005;19:1546–8.
Article
CAS
PubMed
Google Scholar
Biedermann T, Klar AS, Böttcher-Haberzeth S, Michalczyk T, Schiestl C, Reichmann E, et al. Long-term expression pattern of melanocyte markers in light- and dark-pigmented dermo-epidermal cultured human skin substitutes. Pediatr Surg Int. 2015;31:69–76.
Article
PubMed
Google Scholar
Chen L, Xing Q, Zhai Q, Tahtinen M, Zhou F, Chen L, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics. 2017;7:117–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morimoto N, Saso Y, Tomihata K, Taira T, Takahashi Y, Ohta M, et al. Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. J Surg Res. 2005;125:56–67.
Article
PubMed
Google Scholar
Roccia M, França K, Castillo D, Tchernev G, Wollina U, Tirant M, et al. Artificial Hair : By the Dawn to Automatic Biofibre ® Hair Implant. 2018;6:156–62.
Sriwiriyanont P, Lynch KA, McFarland KL, Supp DM, Boyce ST. Characterization of hair follicle development in engineered skin substitutes. PLoS One. 2013;8(6):e65664. doi: https://doi.org/10.1371/journal.pone.0065664.
Hou L, Hagen J, Wang X, Papautsky I, Naik R, Kelley-Loughnane N, et al. Artificial microfluidic skin for in vitro perspiration simulation and testing. Lab Chip. 2013;13:1868–75.
Article
CAS
PubMed
Google Scholar
Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.
Article
CAS
PubMed
Google Scholar
Wilcke I, Lohmeyer JA, Liu S, Condurache A, Krüger S, Mailänder P, et al. VEGF165and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. Langenbeck’s Arch Surg. 2007;392:305–14.
Article
CAS
Google Scholar
Chouhan D, Thatikonda N, Nilebäck L, Widhe M, Hedhammar M, Mandal BB. Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl Mater Interfaces. 2018;0(28):23560–72.
Article
CAS
Google Scholar
Niu Y, Li Q, Ding Y, Dong L, Wang C. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.06.002.
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci. 2015;16:25476–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu X, Shu S, Tang S, Yang L, Liu D, Li K, et al. Efficiency of stem cell based therapy in the treatment of diabetic foot ulcer: a meta-analysis. Endocr J. 2018;65:403–13. https://doi.org/10.1507/endocrj.EJ17-0424.
Article
CAS
PubMed
Google Scholar