Turkmen K, Karagoz A, Kucuk A. Sirtuins as novel players in the pathogenesis of diabetes mellitus. World J Diabetes. 2014;5(6):894–900.
PubMed
PubMed Central
Google Scholar
Skyler JJ, Oddo C. Diabetes trends in the USA. Diabetes Metab Res Rev. 2002;18 Suppl 3:S21–6. https://doi.org/10.1002/dmrr.289.
International Diabetes Federation (IDF). Diabetes Atlas, vol. 144. 7th ed. Brussels: International Diabetes Federation; 2015.
Google Scholar
Black BL, Croom J, Eisen EJ, et al. Differential effects of fat and sucrose on body composition in A/J and C57BL/6 mice. Metabolism. 1998;47:1354–9.
PubMed
CAS
Google Scholar
Roberts CK, Berger JJ, Barnard RJ. Long-term effects of diet on leptin, energy intake, and activity in a model of diet-induced obesity. J Appl Physiol. 2002;93:887–93.
PubMed
CAS
Google Scholar
Bayol SA, Farrington SJ, Stickland NC. A maternal ‘junk food’ diet in pregnancy and lactation promotes anexacerbated taste for‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98:843–51.
PubMed
CAS
Google Scholar
Xia JY, Morley TS, Scherer PE. The adipokine/ceramide axis: key aspects of insulin sensitization. Biochimie. 2014;96(1):130–9.
PubMed
CAS
Google Scholar
Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring HU. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12(12):721–37.
PubMed
CAS
Google Scholar
Wang N, Li Y, Li Z, et al. IRS-1targets TAZ to inhibit adipogenesis of rat bone marrow mesenchymal stem cells through PI3K–Akt and MEK-ERK pathways. Eur J Pharmacol. 2019;849:11–21.
PubMed
CAS
Google Scholar
Grinder-Hansen L, Ribel-Madsen R, Wojtaszewski JF, et al. A common variation of the PTEN gene is associated with peripheral insulin resistance. Diabetes Metab. 2016;42(4):280–4.
PubMed
CAS
Google Scholar
Song P, Wu Y, Xu J, et al. Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation. 2007;116(14):1585–95.
PubMed
CAS
Google Scholar
Hu Z, Lee IH, Wang X, et al. PTEN expression contributes to the regulation of muscle protein degradation in diabetes. Diabetes. 2007;56(10):2449–56.
PubMed
CAS
Google Scholar
Hu Z, WangH LIH, et al. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes. 2010;59(6):1312–20.
PubMed
PubMed Central
CAS
Google Scholar
Lin HT, Otsu M, Nakauchi H. Stem cell therapy: an exercise in patience and prudence. Philos Trans R SocLond B Biol Sci. 2013;368(1609):20110334.
Google Scholar
Bi S, Nie Q, Wang WQ, et al. Human umbilical cord mesenchymal stem cells therapy for insulin resistance: a novel strategy in clinical implication. Curr Stem Cell Res Ther. 2018;13(8):658–64.
PubMed
CAS
Google Scholar
WenBo W, Fei Z, YiHeng D, et al. Human umbilical cord mesenchymal stem cells overexpressing nerve growth factor ameliorate diabetic cystopathy in rats. Neurochem Res. 2017;42(12):3537–47.
PubMed
Google Scholar
Chen P, Huang Q, Xu XJ, et al. The effect of liraglutide in combination with human umbilical cord mesenchymal stem cells treatment on glucose metabolism and β cell function in type 2 diabetes mellitus. ZhonghuaNeiKeZaZhi. 2016;55(5):349–54.
CAS
Google Scholar
Wang X, Yin X, Sun W, et al. Intravenous infusion umbilical cord-derived mesenchymal stem cell in primary immune thrombocytopenia: a two-year follow-up. ExpTher Med. 2017;13(5):2255–8.
Google Scholar
Antunes LC, Elkfury JL, Jornada MN, et al. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch EndocrinolMetab. 2016;60(2):138–42.
Google Scholar
Nam Y, Jung SM, Rim YA, et al. Intraperitoneal infusion of mesenchymal stem cell attenuates severity of collagen antibody induced arthritis. PLoS One. 2018;13(6):e0198740.
PubMed
PubMed Central
Google Scholar
Guo G, Zhuang X, Xu Q, et al. Peripheral infusion of human umbilical cord mesenchymal stem cells rescues acute liver failure lethality in monkeys. Stem Cell Res Ther. 2019;10(1):84.
PubMed
PubMed Central
CAS
Google Scholar
Xu L, Xing Q, Huang T, et al. HDAC1 silence promotes neuroprotective effects of human umbilical cord-derived mesenchymal stem cells in a mouse model of traumatic brain injury via PI3K/AKT pathway. Front Cell Neurosci. 2019;12:498.
PubMed
PubMed Central
Google Scholar
Huang Z, Liu H, Zhang X, et al. Transcriptomic analysis of lung tissues after hUC-MSCs and FTY720 treatment of lipopolysaccharide-induced acute lung injury in mouse models. IntImmunopharmacol. 2018;63:26–34.
CAS
Google Scholar
Lalu MM, McIntyre L, Pugliese C, et al. Safety of cell therapy withmesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7:e47559.
PubMed
PubMed Central
CAS
Google Scholar
Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebocontrolled dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am CollCardiol. 2009;54:2277–86.
CAS
Google Scholar
Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20:1297–308.
PubMed
CAS
Google Scholar
Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010;28:1446–55.
PubMed
PubMed Central
Google Scholar
de Girolamo L, Lucarelli E, Alessandri G, et al. Mesenchymal stem/stromal cells:a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des. 2013;19:2459–73.
PubMed
PubMed Central
Google Scholar
Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1:1–7.
PubMed
PubMed Central
Google Scholar
Braid LR, Wood CA, Wiese DM, et al. Intramuscular administration potentiates extended dwell time of mesenchymal stromal cellscompared to other routes. Cytotherapy. 2018;20(2):232–44.
PubMed
Google Scholar
Elman JS, Murray RC, Wang F, et al. Pharmacokinetics of natural and engineered secreted factors delivered by mesenchymal stromal cells. PLoS One. 2014;9:e89882.
PubMed
PubMed Central
Google Scholar
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.
PubMed
PubMed Central
CAS
Google Scholar
Schrepfer S, Deuse T, Reichenspurner H, et al. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39:573–6.
PubMed
CAS
Google Scholar
Gao J, Dennis JE, Muzic RF, et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169:12–20.
PubMed
CAS
Google Scholar
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. FrontImmunol. 2012;3:297.
CAS
Google Scholar
Francois S, Bensidhoum M, Mouiseddine M, et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 2006;24:1020–9.
PubMed
Google Scholar
Kean TJ, Lin P, Caplan AI, et al. MSCs: delivery routes and engraftment, cell-targeting strategies, and immunemodulation. Stem Cells Int. 2013;2013:732742.
PubMed
PubMed Central
Google Scholar
Braid LR, Hu WG, Davies JE, et al. Engineered mesenchymal cells improve passive immune protection against lethal Venezuelan equine encephalitis virus exposure. Stem CellsTransl Med. 2016;5:1026–35.
CAS
Google Scholar
Reaven G. Metabolic syndrome: pathophysiology and implications formanagement of cardiovascular disease. Circulation. 2002;106:286–8.
PubMed
Google Scholar
Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74.
PubMed
CAS
Google Scholar
Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)—Potsdam study. Diabetes. 2003;52(3):812–7.
PubMed
CAS
Google Scholar
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.
PubMed
PubMed Central
CAS
Google Scholar
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling Crit Rev Clin Lab Sci. 2020;1–19. https://doi.org/10.1080/10408363.2019.1699498.
Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–44.
PubMed
CAS
Google Scholar
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.
PubMed
CAS
Google Scholar
Visser M, Bouter LM, McQuillan GM, et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131–5.
PubMed
CAS
Google Scholar
Huang X, Liu G, Guo J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–96.
PubMed
PubMed Central
CAS
Google Scholar
Sun XJ, Rothenberg P, Kahn CR, et al. Structure of the insulinreceptor substrate IRS-1 defines a unique signal transductionprotein. Nature. 1991;352:73–7.
PubMed
CAS
Google Scholar
Burgering BMT, Coffer PJ. Protein kinase B (c-Akt) inphosphatidylinositol-3-OH kinase signaltransduction. Nature. 1995;376:599–602.
PubMed
CAS
Google Scholar
Biddinger SB, Kahn CR. From mice to men: insightsinto the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123–58.
PubMed
CAS
Google Scholar
Franke TF, Yang SI, Chan TO, et al. The protein kinase encoded by theAkt proto-oncogene is a target of the PDGF-activated phosphatidylinositol3-kinase. Cell. 1995;81:727–36.
PubMed
CAS
Google Scholar
Aguirre V, Uchida T, Yenush L, et al. The c-JunNH2-terminal kinase promotes insulin resistance during associationwith insulin receptor substrate-1 and phosphorylationof Ser307. J Biol Chem. 2000;275:9047.
PubMed
CAS
Google Scholar
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesityand insulin resistance. Nature. 2002;420:333–6.
PubMed
CAS
Google Scholar
Fujishiro M, Gotoh Y, Katagiri H, et al. Three mitogenactivatedprotein kinases inhibit insulin signaling by differentmechanisms in 3T3-L1 adipocytes. MolEndocrinol. 2003;17:487.
CAS
Google Scholar
Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27:361–70.
PubMed
CAS
Google Scholar
Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409:729–33.
PubMed
CAS
Google Scholar
Neufer PD, Carey JO, Dohm GL. Transcriptional regulation of the gene for glucose transporter GLUT4 in skeletal muscle. Effects of diabetes and fasting. J Biol Chem. 1993;268:13824–9.
PubMed
CAS
Google Scholar
Cheng Z, Guo S, Copps K, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009;15:1307–11.
PubMed
PubMed Central
CAS
Google Scholar
Hagiwara A, CornuM CN, et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012;15:725–38.
PubMed
CAS
Google Scholar
Vasconsuelo A, Milanesi L, Boland R. 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol. 2008;196:385–97.
PubMed
CAS
Google Scholar
Ozaki KI, Awazu M, Tamiya M, et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J PhysiolEndocrinolMetab. 2016;310:E643–e651.
Google Scholar
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. MolMetab. 2017;6:174–84.
CAS
Google Scholar
Chen S, Cavazza E, Barlier C, et al. Beside P53 and PTEN: identification of molecular alterations of the RAS/MAPK and PI3K/AKT signaling pathways in high-grade serous ovarian carcinomas to determine potential novel therapeutic targets. Oncol Lett. 2016;12(5):3264–72.
PubMed
PubMed Central
CAS
Google Scholar
Higgins DF, Ewart LM, Masterson E, et al. BMP7-induced-Pten inhibits Akt and prevents renal fibrosis. Biochim Biophys Acta Mol basis Dis. 2017;1863(12):3095–104.
PubMed
CAS
Google Scholar
Zhu L, Lin X, Zhi L, et al. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo. Stem Cell Res Ther. 2020;11(1):26.
PubMed
PubMed Central
CAS
Google Scholar
Schultze SM, Hemmings BA, Niessen M, et al. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med. 2012;14:e1.
PubMed
Google Scholar
Yu X, Shen N, Zhang ML, et al. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J. 2011;30(18):3754–65.
PubMed
PubMed Central
CAS
Google Scholar
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med. 2016;14:3.
PubMed
PubMed Central
CAS
Google Scholar
Annunziata M, Granata R, Ghigo E. The IGF system. ActaDiabetol. 2011;48:1–9.
CAS
Google Scholar
Boulware SD, Tamborlane WV, Rennert NJ, et al. Comparison of the metabolic effects of recombinant human insulin-like growth factor-I and insulin. Dose-response relationships in healthy young and middle-aged adults. J ClinInvestig. 1994;93:1131e9.
Google Scholar