Sealock R, Butler M, Kramarcy N, Gao K, Murnane A, Douville K, Froehner S. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle. J Cell Biol. 1991;113:1133–44.
Article
CAS
PubMed
Google Scholar
Matamoros M, Pérez-Hernández M, Guerrero-Serna G, Amorós I, Barana A, Núñez M, Ponce-Balbuena D, Sacristán S, Gómez R, Tamargo J, Caballero R, Jalife J, Delpón E. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovascular research. 2016;110:279–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim M, Whitehead N, Bible K, Adams M, Froehner S. Mice lacking α-, β1- and β2-syntrophins exhibit diminished function and reduced dystrophin expression in both cardiac and skeletal muscle. Hum Mol Genet. 2019;28:386–95.
CAS
PubMed
Google Scholar
Ueda K, Valdivia C, Medeiros-Domingo A, Tester D, Vatta M, Farrugia G, Ackerman M, Makielski J. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA. 2008;105:9355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G, Ai T, Kim J, Mohapatra B, Xi Y, Li Z, Abbasi S, Purevjav E, Samani K, Ackerman M, Qi M, Moss A, Shimizu W, Towbin J, Cheng J, Vatta M. alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol. 2008;1:193–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brion M, Blanco-Verea A, Sobrino B, Santori M, Gil R, Ramos-Luis E, Martinez M, Amigo J, Carracedo A. Next generation sequencing challenges in the analysis of cardiac sudden death due to arrhythmogenic disorders. Electrophoresis. 2014;35:3111–6.
Article
CAS
PubMed
Google Scholar
Cheng J, Van Norstrand D, Medeiros-Domingo A, Valdivia C, Tan B, Ye B, Kroboth S, Vatta M, Tester D, January C, Makielski J, Ackerman M. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol. 2009;2:667–76.
Article
PubMed
PubMed Central
Google Scholar
Yan J, Wen W, Xu W, Long J, Adams M, Froehner S, Zhang M. Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin. EMBO J. 2005;24:3985–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newbell B, Anderson J, Jarrett H. Ca2+-calmodulin binding to mouse alpha1 syntrophin: syntrophin is also a Ca2+-binding protein. Biochemistry. 1997;36:1295–305.
Article
CAS
PubMed
Google Scholar
Chin D, Means A. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10:322–8.
Article
CAS
PubMed
Google Scholar
Yang K, Kyle J, Makielski J, Dudley S. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res. 2015;116:1937–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braunwald E. The war against heart failure: the lancet lecture. Lancet. 2015;385:812–24.
Article
PubMed
Google Scholar
Landstrom A, Dobrev D, Wehrens X. Calcium signaling and cardiac arrhythmias. Circ Res. 2017;120:1969–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berra-Romani R, Guerra G, Moccia F. Editorial: advances and current challenges in calcium signaling within the cardiovascular system. Front Physiol. 2021;12:696315.
Article
PubMed
PubMed Central
Google Scholar
Hong T, Shaw R. Cardiac T-Tubule microanatomy and function. Physiol Rev. 2017;97:227–52.
Article
PubMed
Google Scholar
Yang L, Li R, Xiang B, Li Y, Wang L, Guo Y, Liang J, Wang X, Hou T, Xing X, Zhou Z, Ye H, Feng R, Lakatta E, Chai Z, Wang S. Transcriptional regulation of intermolecular Ca signaling in hibernating ground squirrel cardiomyocytes: The myocardin-junctophilin axis. Proc Natl Acad Sci USA. 2021;118:e2025333118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Zhou Y, Luo Y, Kan R, Chen J, Xuan H, Wang C, Chen J, Xu T, Li D. SERCA2a ameliorates cardiomyocyte T-tubule remodeling via the calpain/JPH2 pathway to improve cardiac function in myocardial ischemia/reperfusion mice. Sci Rep. 2021;11:2037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross P, Johnson J, Romero C, Eaton D, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb A, Garbincius J, Lambert J, Varol E, Yang Y, Wallner M, Feldsott E, Kubo H, Berretta R, Yu D, Rizzo V, Elrod J, Sabri A, Gorelik J, Chen X, Houser S. Interaction of the joining region in junctophilin-2 with the L-type Ca channel is pivotal for cardiac dyad assembly and intracellular Ca dynamics. Circ Res. 2021;128:92–114.
Article
CAS
PubMed
Google Scholar
Poulet C, Sanchez-Alonso J, Swiatlowska P, Mouy F, Lucarelli C, Alvarez-Laviada A, Gross P, Terracciano C, Houser S, Gorelik J. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovasc Res. 2021;117:149–61.
Article
CAS
PubMed
Google Scholar
Yang Z, Su W, Zhang Y, Zhou L, Xia Z, Lei S. Selective inhibition of PKCβ2 improves Caveolin-3/eNOS signaling and attenuates lipopolysaccharide-induced injury by inhibiting autophagy in H9C2 cardiomyocytes. J Mol Histol. 2021;52:705–15.
Article
CAS
PubMed
Google Scholar
Pradhan B, Prószyński T. A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int J Mol Sci. 2020;21:8736.
Article
CAS
PubMed Central
Google Scholar
Hong T, Smyth J, Gao D, Chu K, Vogan J, Fong T, Jensen B, Colecraft H, Shaw R. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol. 2010;8:e1000312.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, Hsu P, Wu X, Jiang W, Marraffini L, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koblan L, Erdos M, Wilson C, Cabral W, Levy J, Xiong Z, Tavarez U, Davison L, Gete Y, Mao X, Newby G, Doherty S, Narisu N, Sheng Q, Krilow C, Lin C, Gordon L, Cao K, Collins F, Brown J, Liu D. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature. 2021;589:608–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Wang D, Lan F, Wei G, Ni T, Chai R, Liu D, Hu S, Li M, Li D, Wang H, Wang Y. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci Rep. 2017;7:2320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong T, Zhang S, Chang Y, Bai R, Jiang Y, Ma S, Li Y, Jiang H, Lu W. The establishment of a homozygous SNTA1 knockout human embryonic stem cell line (WAe009-A-50) using the CRISPR/Cas9 system. Stem Cell Res. 2021;51:102196.
Article
CAS
PubMed
Google Scholar
Sala L, van Meer B, Tertoolen L, Bakkers J, Bellin M, Davis R, Denning C, Dieben M, Eschenhagen T, Giacomelli E, Grandela C, Hansen A, Holman E, Jongbloed M, Kamel S, Koopman C, Lachaud Q, Mannhardt I, Mol M, Mosqueira D, Orlova V, Passier R, Ribeiro M, Saleem U, Smith G, Burton F, Mummery C. MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circ Res. 2018;122:e5–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Meer B, Sala L, Tertoolen L, Smith G, Burton F, Mummery C. Quantification of muscle contraction in vitro and in vivo using MUSCLEMOTION software: from stem cell-derived cardiomyocytes to zebrafish and human hearts. Curr Protoc Hum Genet. 2018;99: e67.
Article
PubMed
Google Scholar
Mosqueira D, Mannhardt I, Bhagwan J, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer S, Tinker A, Smith J, Carrier L, Williams P, Gaffney D, Eschenhagen T, Hansen A, Denning C. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J. 2018;39:3879–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuwahara K, Saito Y, Takano M, Arai Y, Yasuno S, Nakagawa Y, Takahashi N, Adachi Y, Takemura G, Horie M, Miyamoto Y, Morisaki T, Kuratomi S, Noma A, Fujiwara H, Yoshimasa Y, Kinoshita H, Kawakami R, Kishimoto I, Nakanishi M, Usami S, Saito Y, Harada M, Nakao K. NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J. 2003;22:6310–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tardiff J, Hewett T, Factor S, Vikstrom K, Robbins J, Leinwand L. Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects, American journal of physiology. Heart Circ Physiol. 2000;278:H412-419.
Article
CAS
Google Scholar
Silberbach M, Gorenc T, Hershberger R, Stork P, Steyger P, Roberts C. Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J Biol Chem. 1999;274:24858–64.
Article
CAS
PubMed
Google Scholar
Harvey P, Leinwand L. The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol. 2011;194:355–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis F, Gupta M, Camoretti-Mercado B, Schwartz R, Gupta M. Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem. 2003;278:20047–58.
Article
CAS
PubMed
Google Scholar
Zhang W, Qi F, Chen D, Xiao W, Wang J, Zhu W. Ca2+/calmodulin-dependent protein kinase IIdelta orchestrates G-protein-coupled receptor and electric field stimulation-induced cardiomyocyte hypertrophy. Clin Exp Pharmacol Physiol. 2010;37:795–802.
CAS
PubMed
Google Scholar
Bers D. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.
Article
CAS
PubMed
Google Scholar
Dewenter M, von der Lieth A, Katus H, Backs J. Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res. 2017;121:1000–20.
Article
CAS
PubMed
Google Scholar
Zhang L, Malik S, Pang J, Wang H, Park K, Yule D, Blaxall B, Smrcka A. Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell. 2013;153:216–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Gao H, Liu D, Zhong X, Shi X, Yu P, Jin L, Liu Y, Tang Y, Song Y, Liu J, Hu X, Li C, Song L, Qin J, Wu F, Lan F, Zhang Y, Xiao R. CaMKII-δ9 promotes cardiomyopathy through disrupting UBE2T-dependent DNA repair. Nat Cell Biol. 2019;21:1152–63.
Article
CAS
PubMed
Google Scholar
Lehman S, Tal-Grinspan L, Lynn M, Strom J, Benitez G, Anderson M, Tardiff J. Chronic calmodulin-kinase ii activation drives disease progression in mutation-specific hypertrophic cardiomyopathy. Circulation. 2019;139:1517–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helms A, Alvarado F, Yob J, Tang V, Pagani F, Russell M, Valdivia H, Day S. Genotype-dependent and -independent calcium signaling dysregulation in human hypertrophic cardiomyopathy. Circulation. 2016;134:1738–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Györke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res. 2008;77:245–55.
Article
PubMed
CAS
Google Scholar
Cattaneo M, Porretta A, Gallino A. Ranolazine: Drug overview and possible role in primary microvascular angina management. Int J Cardiol. 2015;181:376–81.
Article
PubMed
Google Scholar
Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127:575–84.
Article
CAS
PubMed
Google Scholar
Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12:127–37.
Article
CAS
PubMed
Google Scholar
Rodeheffer R, Tanaka I, Imada T, Hollister A, Robertson D, Inagami T. Atrial pressure and secretion of atrial natriuretic factor into the human central circulation. J Am Coll Cardiol. 1986;8:18–26.
Article
CAS
PubMed
Google Scholar
Gardner D. Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends Endocrinol Metab. 2003;14:411–6.
Article
CAS
PubMed
Google Scholar
Taylor K, Verbakel J, Feakins B, Price C, Perera R, Bankhead C, Plüddemann A. Diagnostic accuracy of point-of-care natriuretic peptide testing for chronic heart failure in ambulatory care: systematic review and meta-analysis. BMJ. 2018;361:k1450.
Article
PubMed
PubMed Central
Google Scholar
Murayama T, Ogawa H, Kurebayashi N, Ohno S, Horie M, Sakurai T. A tryptophan residue in the caffeine-binding site of the ryanodine receptor regulates Ca sensitivity. Commun Biol. 2018;1:98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Willis B, Pandit S, Ponce-Balbuena D, Zarzoso M, Guerrero-Serna G, Limbu B, Deo M, Camors E, Ramirez R, Mironov S, Herron T, Valdivia H, Jalife J. Constitutive intracellular Na+ excess in purkinje cells promotes arrhythmogenesis at lower levels of stress than ventricular myocytes from mice with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2016;133:2348–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Liu X, Yu H, Pei J, Zhang Y, Gong J, Pu J. Common variants in TRDN and CALM1 are associated with risk of sudden cardiac death in chronic heart failure patients in Chinese Han population. PLoS ONE. 2015;10:e0132459.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen H, Valle G, Furlan S, Nani A, Gyorke S, Fill M, Volpe P. Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. J Gen Physiol. 2013;142:127–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bers D. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.
Article
CAS
PubMed
Google Scholar
Chopra N, Kannankeril P, Yang T, Hlaing T, Holinstat I, Ettensohn K, Pfeifer K, Akin B, Jones L, Franzini-Armstrong C, Knollmann B. Modest reductions of cardiac calsequestrin increase sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in mice. Circ Res. 2007;101:617–26.
Article
CAS
PubMed
Google Scholar
Kalyanasundaram A, Lacombe V, Belevych A, Brunello L, Carnes C, Janssen P, Knollmann B, Periasamy M, Gyørke S. Up-regulation of sarcoplasmic reticulum Ca(2+) uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2. Cardiovasc Res. 2013;98:297–306.
Article
CAS
PubMed
Google Scholar
Bhat S, Ali R, Khanday F. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Cell Prolif. 2019;52: e12562.
Article
PubMed
CAS
Google Scholar
Sherrid M. Drug therapy for hypertrophic cardiomypathy: physiology and practice. Curr Cardiol Rev. 2016;12:52–65.
Article
CAS
PubMed
Google Scholar
Bairey Merz C, Pepine C, Walsh M, Fleg J. Ischemia and No Obstructive Coronary Artery Disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135:1075–92.
Article
PubMed
Google Scholar
Polsinelli V, Sinha A, Shah S. Visceral congestion in heart failure: right ventricular dysfunction, splanchnic hemodynamics, and the intestinal microenvironment. Curr Heart Fail Rep. 2017;14:519–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaswal J, Keung W, Wang W, Ussher J, Lopaschuk G. Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochem Biophys Acta. 1813;2011:1333–50.
Google Scholar
Sossalla S, Wagner S, Rasenack E, Ruff H, Weber S, Schöndube F, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier L. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts–role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.
Article
CAS
PubMed
Google Scholar
Toischer K, Hartmann N, Wagner S, Fischer T, Herting J, Danner B, Sag C, Hund T, Mohler P, Belardinelli L, Hasenfuss G, Maier L, Sossalla S. Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol. 2013;61:111–22.
Article
CAS
PubMed
PubMed Central
Google Scholar