Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021. https://doi.org/10.7150/thno.55664.
Article
PubMed
PubMed Central
Google Scholar
Fu J, Warmflash A, Lutolf MP. Stem-cell-based embryo models for fundamental research and translation. Nat Mater. 2021. https://doi.org/10.1038/s41563-020-00829-9.
Article
PubMed
Google Scholar
Yang C, Luo M, Chen Y, You M, Chen Q. MicroRNAs as important regulators mediate the multiple differentiation of mesenchymal stromal cells. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.619842.
Article
PubMed
PubMed Central
Google Scholar
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.27486.
Article
PubMed
Google Scholar
Sui L, Wang M, Han Q, Yu L, Zhang L, Zheng L, Lian J, Zhang J, Valverde P, Xu Q, Tu Q, Chen J. A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials. 2018. https://doi.org/10.1016/j.biomaterials.2018.05.038.
Article
PubMed
PubMed Central
Google Scholar
Sanjeev G, Sidharthan DS, Pranavkrishna S, Pranavadithya S, Abhinandan R, Akshaya RL, Balagangadharan K, Siddabathuni N, Srinivasan S, Selvamurugan N. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett. 2020. https://doi.org/10.1016/j.bmcl.2020.127137.
Article
PubMed
Google Scholar
Guan X, Gao Y, Zhou J, Wang J, Zheng F, Guo F, Chang A, Li X, Wang B. miR-223 regulates adipogenic and osteogenic differentiation of mesenchymal stem cells through a C/EBPs/miR-223/FGFR2 regulatory feedback loop. Stem Cells. 2015. https://doi.org/10.1002/stem.1947.
Article
PubMed
Google Scholar
Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X, Wang B. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013. https://doi.org/10.1038/cddis.2013.356.
Article
PubMed
PubMed Central
Google Scholar
Zhou W, Chen L, Wu H, Wang T, Ma G, Wang B, Wang C, Zhang N, Zhang Y, He L, Qin S, Sun X, Zhang H, Shen L. Altered microRNAs in C3H10T1/2 cells induced by p.E95K mutant IHH signaling. Hereditas. 2021. https://doi.org/10.1186/s41065-021-00207-8.
Article
PubMed
PubMed Central
Google Scholar
Woods S, Barter MJ, Elliott HR, McGillivray CM, Birch MA, Clark IM, Young DA. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol. 2019. https://doi.org/10.1016/j.matbio.2018.08.009.
Article
PubMed
PubMed Central
Google Scholar
Celik N, Kim MH, Hayes DJ, Ozbolat IT. miRNA induced co-differentiation and cross-talk of adipose tissue-derived progenitor cells for 3D heterotypic pre-vascularized bone formation. Biofabrication. 2021. https://doi.org/10.1088/1758-5090/ac23ae.
Article
PubMed
PubMed Central
Google Scholar
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA. 2019. https://doi.org/10.1261/rna.068692.118.
Article
PubMed
PubMed Central
Google Scholar
Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci CMLS. 2018. https://doi.org/10.1007/s00018-017-2591-0.
Article
PubMed
Google Scholar
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018. https://doi.org/10.1242/dev.146589.
Article
PubMed
Google Scholar
Huang CC, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration. Biomaterials. 2016. https://doi.org/10.1016/j.biomaterials.2016.09.029.
Article
PubMed
PubMed Central
Google Scholar
Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003. https://doi.org/10.1016/s0092-8674(03)00847-x.
Article
PubMed
Google Scholar
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK signaling in stem cell self-renewal and differentiation. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21072613.
Article
PubMed
PubMed Central
Google Scholar
Guo G, Stirparo GG, Strawbridge SE, Spindlow D, Yang J, Clarke J, Dattani A, Yanagida A, Li MA, Myers S, Özel BN, Nichols J, Smith A. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell. 2021. https://doi.org/10.1016/j.stem.2021.02.025.
Article
PubMed
PubMed Central
Google Scholar
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol Adv. 2018. https://doi.org/10.1016/j.biotechadv.2018.08.002.
Article
PubMed
Google Scholar
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019. https://doi.org/10.1038/s41580-018-0045-7.
Article
PubMed
PubMed Central
Google Scholar
Wu K, He J, Pu W, Peng Y. The role of Exportin-5 in MicroRNA biogenesis and cancer. Genomics Proteomics Bioinform. 2018. https://doi.org/10.1016/j.gpb.2017.09.004.
Article
Google Scholar
Clancy JW, Zhang Y, Sheehan C, D’Souza-Schorey C. An ARF6-Exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat Cell Biol. 2019. https://doi.org/10.1038/s41556-019-0345-y.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, Wang HW. Cryo-EM structure of human dicer and its complexes with a Pre-miRNA substrate. Cell. 2018. https://doi.org/10.1016/j.cell.2018.03.080.
Article
PubMed
PubMed Central
Google Scholar
Song X, Li Y, Cao X, Qi Y. MicroRNAs and their Regulatory roles in plant-environment interactions. Annu Rev Plant Biol. 2019. https://doi.org/10.1146/annurev-arplant-050718-100334.
Article
PubMed
Google Scholar
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017. https://doi.org/10.1038/nature21365.
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. J Exp Bot. 2021. https://doi.org/10.1093/jxb/erab030.
Article
PubMed
PubMed Central
Google Scholar
Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms21010132.
Article
PubMed
PubMed Central
Google Scholar
Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM. Extracellular vesicle proteins and microRNAs as biomarkers for traumatic brain injury. Front Neurol. 2020. https://doi.org/10.3389/fneur.2020.00663.
Article
PubMed
PubMed Central
Google Scholar
Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018. https://doi.org/10.1042/bst20170037.
Article
PubMed
Google Scholar
Wang SM, Yang PW, Feng XJ, Zhu YW, Qiu FJ, Hu XD, Zhang SH. Apigenin inhibits the growth of hepatocellular carcinoma cells by affecting the expression of microRNA transcriptome. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.657665.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Xuan X, Su Z, Wang W, Abdelrahman M, Jiu S, Zhang X, Liu Z, Wang X, Wang C, Fang J. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). BMC Plant Biol. 2021. https://doi.org/10.1186/s12870-021-03188-y.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, Li D, Song H, Wang J, Hong M, Wang X, Huang K, Zheng L, Tong Q. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019. https://doi.org/10.1038/s41418-018-0220-6.
Article
PubMed
PubMed Central
Google Scholar
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D’Agostino VG. RNA packaging into extracellular vesicles: an orchestra of RNA-binding proteins? J Extracelllar Vesicles. 2020. https://doi.org/10.1002/jev2.12043.
Article
Google Scholar
Treiber T, Treiber N, Plessmann U, Harlander S, Daiß JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G. A Compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol Cell. 2017. https://doi.org/10.1016/j.molcel.2017.03.014.
Article
PubMed
Google Scholar
Min KW, Jo MH, Shin S, Davila S, Zealy RW, Kang SI, Lloyd LT, Hohng S, Yoon JH. AUF1 facilitates microRNA-mediated gene silencing. Nucl Acids Res. 2017. https://doi.org/10.1093/nar/gkx149.
Article
PubMed
PubMed Central
Google Scholar
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and osteoporosis: a review. Nutrients. 2020. https://doi.org/10.3390/nu12102999.
Article
PubMed
PubMed Central
Google Scholar
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019. https://doi.org/10.1016/j.biomaterials.2017.12.025.
Article
PubMed
Google Scholar
Chen C, Jiang Z, Yang G. Laminins in osteogenic differentiation and pluripotency maintenance. Differ Res Biol Divers. 2020. https://doi.org/10.1016/j.diff.2020.05.002.
Article
Google Scholar
Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00757.
Article
PubMed
PubMed Central
Google Scholar
Yan M, Cai L, Duan X, Rai MF. Novel mechanistic role of Kif26b in adipogenic differentiation of murine multipotent stromal cells. Biochem Biophys Res Commun. 2022. https://doi.org/10.1016/j.bbrc.2021.12.067.
Article
PubMed
PubMed Central
Google Scholar
Sun XK, Zhou J, Zhang L, Ma T, Wang YH, Yang YM, Tang YT, Li H, Wang LJ. Down-regulation of Noggin and miR-138 coordinately promote osteogenesis of mesenchymal stem cells. J Mol Histol. 2017. https://doi.org/10.1007/s10735-017-9740-5.
Article
PubMed
Google Scholar
Brenner TK, Posa-Markaryan K, Hercher D, Sperger S, Heimel P, Keibl C, Nürnberger S, Grillari J, Redl H, Hacobian A. Evaluation of BMP2/miRNA co-expression systems for potent therapeutic efficacy in bone-tissue regeneration. Eur Cells Mater. 2021. https://doi.org/10.22203/eCM.v041a18.
Article
Google Scholar
Jiao J, Feng G, Wu M, Wang Y, Li R, Liu J. MiR-140-5p promotes osteogenic differentiation of mouse embryonic bone marrow mesenchymal stem cells and post-fracture healing of mice. Cell Biochem Funct. 2020. https://doi.org/10.1002/cbf.3585.
Article
PubMed
PubMed Central
Google Scholar
Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018. https://doi.org/10.1007/s00418-018-1640-6.
Article
PubMed
Google Scholar
Zhang R, Weng Y, Li B, Jiang Y, Yan S, He F, Chen X, Deng F, Wang J, Shi Q. BMP9-induced osteogenic differentiation is partially inhibited by miR-30a in the mesenchymal stem cell line C3H10T1/2. J Mol Histol. 2015. https://doi.org/10.1007/s10735-015-9628-1.
Article
PubMed
Google Scholar
Kim EJ, Kang IH, Lee JW, Jang WG, Koh JT. MiR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci. 2013. https://doi.org/10.1016/j.lfs.2013.01.015.
Article
PubMed
Google Scholar
Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011. https://doi.org/10.1002/jbmr.377.
Article
PubMed
Google Scholar
Zhao C, Gu Y, Wang Y, Qin Q, Wang T, Huang M, Zhang H, Qu Y, Zhang J, Du Z, Jiang XX, Xu L. miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration via repressing Dkk3. Stem Cells Int. 2021. https://doi.org/10.1155/2021/7435605.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Dong R, Wang B, Lou Z, Ying J, Xia C, Hu S, Wang W, Sun Q, Zhang P, Ge Q, Xiao L, Chen D, Tong P, Li J, Jin H. Genome-wide microRNA screening reveals miR-582-5p as a mesenchymal stem cell-specific microRNA in subchondral bone of the human knee joint. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28751.
Article
PubMed
PubMed Central
Google Scholar
Balagangadharan K, Viji Chandran S, Arumugam B, Saravanan S, Devanand Venkatasubbu G, Selvamurugan N. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.122.
Article
PubMed
Google Scholar
Huang C, Geng J, Wei X, Zhang R, Jiang S. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting Smad4. FEBS Lett. 2016. https://doi.org/10.1002/1873-3468.12112.
Article
PubMed
Google Scholar
Jeong BC, Kang IH, Hwang YC, Kim SH, Koh JT. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis. 2014. https://doi.org/10.1038/cddis.2014.485.
Article
PubMed
PubMed Central
Google Scholar
Huang K, Fu J, Zhou W, Li W, Dong S, Yu S, Hu Z, Wang H, Xie Z. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro. Biochimie. 2014. https://doi.org/10.1016/j.biochi.2014.02.005.
Article
PubMed
Google Scholar
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev Off J Int Assoc Study Obes. 2020. https://doi.org/10.1111/obr.12958.
Article
Google Scholar
Petrus P, Lecoutre S, Dollet L, Wiel C, Sulen A, Gao H, Tavira B, Laurencikiene J, Rooyackers O, Checa A, Douagi I, Wheelock CE, Arner P, McCarthy M, Bergo MO, Edgar L, Choudhury RP, Aouadi M, Krook A, Rydén M. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 2020. https://doi.org/10.1016/j.cmet.2019.11.019.
Article
PubMed
Google Scholar
Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep. 2017. https://doi.org/10.1007/s13679-017-0283-6.
Article
PubMed
PubMed Central
Google Scholar
Lehnig AC, Stanford KI. Exercise-induced adaptations to white and brown adipose tissue. J Exp Biol. 2018. https://doi.org/10.1242/jeb.161570.
Article
PubMed
PubMed Central
Google Scholar
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019. https://doi.org/10.1038/s41580-018-0093-z.
Article
PubMed
Google Scholar
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019. https://doi.org/10.1002/term.2914.
Article
PubMed
Google Scholar
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Investig. 2019. https://doi.org/10.1172/jci129187.
Article
PubMed
PubMed Central
Google Scholar
Man XF, Tan SW, Tang HN, Guo Y, Tang CY, Tang J, Zhou CL, Zhou HD. MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a. Am J Transl Res. 2016;8(6):2727–37.
CAS
PubMed
PubMed Central
Google Scholar
Lin JC. Multi-posttranscriptional regulations lessen the repressive effect of SRPK1 on brown adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids. 2018. https://doi.org/10.1016/j.bbalip.2018.02.004.
Article
PubMed
Google Scholar
Liu Y, Zhang ZC, Qian SW, Zhang YY, Huang HY, Tang Y, Guo L, Li X, Tang QQ. MicroRNA-140 promotes adipocyte lineage commitment of C3H10T1/2 pluripotent stem cells via targeting osteopetrosis-associated transmembrane protein 1. J Biol Chem. 2013. https://doi.org/10.1074/jbc.M112.426163.
Article
PubMed
PubMed Central
Google Scholar
Chen SZ, Xu X, Ning LF, Jiang WY, Xing C, Tang QQ, Huang HY. miR-27 impairs the adipogenic lineage commitment via targeting lysyl oxidase. Obesity (Silver Spring). 2015. https://doi.org/10.1002/oby.21319.
Article
PubMed Central
Google Scholar
Lin JC. RBM4-MEF2C network constitutes a feed-forward circuit that facilitates the differentiation of brown adipocytes. RNA Biol. 2015. https://doi.org/10.1080/15476286.2015.1017213.
Article
PubMed
PubMed Central
Google Scholar
Cho YK, Son Y, Kim SN, Song HD, Kim M, Park JH, Jung YS, Ahn SY, Saha A, Granneman JG, Lee YH. MicroRNA-10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Mol Metab. 2019. https://doi.org/10.1016/j.molmet.2019.08.015.
Article
PubMed
PubMed Central
Google Scholar
Yun UJ, Song NJ, Yang DK, Kwon SM, Kim K, Kim S, Jo DG, Park WJ, Park KW, Kang H. miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. J Cell Biochem. 2015. https://doi.org/10.1002/jcb.25204.
Article
PubMed
Google Scholar
Zhou J, Guo F, Wang G, Wang J, Zheng F, Guan X, Chang A, Zhang X, Dai C, Li S, Li X, Wang B. miR-20a regulates adipocyte differentiation by targeting lysine-specific demethylase 6b and transforming growth factor-β signaling. Int J Obes (Lond). 2015. https://doi.org/10.1038/ijo.2015.43.
Article
Google Scholar
Xiang H, Zhong ZX, Peng YD, Jiang SW. The emerging role of Zfp217 in adipogenesis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071367.
Article
PubMed
PubMed Central
Google Scholar
Yan X, Huang Y, Zhao JX, Rogers CJ, Zhu MJ, Ford SP, Nathanielsz PW, Du M. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes (Lond). 2013. https://doi.org/10.1038/ijo.2012.69.
Article
Google Scholar
Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY, Steininger H, Zhao L, Walkiewicz MP, Quarto N, Levi B, Wan DC, Weissman IL, Goodman SB, Yang F, Longaker MT, Chan CKF. Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 2020. https://doi.org/10.1038/s41591-020-1013-2.
Article
PubMed
PubMed Central
Google Scholar
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020. https://doi.org/10.1038/s41584-020-0413-5.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H, Liu H. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 2017. https://doi.org/10.1186/s13287-017-0632-0.
Article
PubMed
PubMed Central
Google Scholar
Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21072358.
Article
PubMed
PubMed Central
Google Scholar
Wa Q, He P, Huang S, Zuo J, Li X, Zhu J, Hong S, Lv G, Cai D, Xu D, Zou X, Liu Y. miR-30b regulates chondrogenic differentiation of mouse embryo-derived stem cells by targeting SOX9. Exp Ther Med. 2017. https://doi.org/10.3892/etm.2017.5344.
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Yuan SZ, Sun H, Sun L, Zhou D, Yan J. miR-199b-5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med. 2020. https://doi.org/10.1002/term.3122.
Article
PubMed
Google Scholar
Gong M, Liang T, Jin S, Dai X, Zhou Z, Gao M, Huang S, Luo J, Zou L, Zou X. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions. Am J Transl Res. 2017;9:4111–24.
CAS
PubMed
PubMed Central
Google Scholar
Wa Q, Liu Y, Huang S, He P, Zuo J, Li X, Li Z, Dong L, Peng J, Wu S, Chen F, Cai D, Zou X, Liao W. miRNA-140 inhibits C3H10T1/2 mesenchymal stem cell proliferation by targeting CXCL12 during transforming growth factor-β3-induced chondrogenic differentiation. Mol Med Rep. 2017. https://doi.org/10.3892/mmr.2017.6720.
Article
PubMed
Google Scholar
Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0021679.
Article
PubMed
PubMed Central
Google Scholar
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Sugimoto T. Phloretin suppresses bone morphogenetic protein-2-induced osteoblastogenesis and mineralization via inhibition of phosphatidylinositol 3-kinases/Akt pathway. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20102481.
Article
PubMed
PubMed Central
Google Scholar
Karadeniz F, Oh JH, Lee JI, Seo Y, Kong CS. 3,5-dicaffeoyl-epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation. Phytomed Int J Phytother Phytopharmacol. 2020. https://doi.org/10.1016/j.phymed.2020.153225.
Article
Google Scholar
Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017. https://doi.org/10.7326/aitc201708010.
Article
PubMed
Google Scholar
Cotts KG, Cifu AS. Treatment of Osteoporosis. JAMA. 2018. https://doi.org/10.1001/jama.2017.21995.
Article
PubMed
Google Scholar
Di Benedetto A, Posa F, Marazzi M, Kalemaj Z, Grassi R, Lo Muzio L, Comite MD, Cavalcanti-Adam EA, Grassi FR, Mori G. Osteogenic and chondrogenic potential of the supramolecular aggregate T-LysYal®. Front Endocrinol. 2020. https://doi.org/10.3389/fendo.2020.00285.
Article
Google Scholar
Dalle Carbonare L, Bertacco J, Marchetto G, Cheri S, Deiana M, Minoia A, Tiso N, Mottes M, Valenti MT. Methylsulfonylmethane enhances MSC chondrogenic commitment and promotes pre-osteoblasts formation. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02396-5.
Article
PubMed
Google Scholar
Laine SK, Alm JJ, Virtanen SP, Aro HT, Laitala-Leinonen TK. MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2012. https://doi.org/10.1002/jcb.24144.
Article
PubMed
Google Scholar
Yang M, Yan X, Yuan FZ, Ye J, Du MZ, Mao ZM, Xu BB, Chen YR, Song YF, Fan BS, Yu JK. MicroRNA-210-3p promotes chondrogenic differentiation and inhibits adipogenic differentiation correlated with HIF-3α signalling in bone marrow mesenchymal stem cells. Biomed Res Int. 2021. https://doi.org/10.1155/2021/6699910.
Article
PubMed
PubMed Central
Google Scholar
Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, Zhao RC. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem. 2013. https://doi.org/10.1002/jcb.24479.
Article
PubMed
Google Scholar
Zhu J, Fu Q, Shao J, Jinhui P, Qian Q, Zhou Y, Yi C. Regulating effect of Circ_ATRNL1 on the promotion of SOX9 expression to promote chondrogenic differentiation of hAMSCs mediated by MiR-145-5p. J Tissue Eng Regen Med. 2021. https://doi.org/10.1002/term.3189.
Article
PubMed
Google Scholar
Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005. https://doi.org/10.1016/s1470-2045(05)70168-6.
Article
PubMed
Google Scholar
Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine. 2009. https://doi.org/10.1016/j.cyto.2009.08.002.
Article
PubMed
PubMed Central
Google Scholar
Nguyen K, Tran MN, Rivera A, Cheng T, Windsor GO, Chabot AB, Cavanaugh JE, Collins-Burow BM, Lee SB, Drewry DH, Flaherty PT, Burow ME. MAP3K family review and correlations with patient survival outcomes in various cancer types. Front Biosci. 2022. https://doi.org/10.31083/j.fbl2705167.
Article
Google Scholar
Luo H, Gao H, Liu F, Qiu B. Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2017. https://doi.org/10.3892/ijmm.2017.2918.
Article
PubMed
PubMed Central
Google Scholar
Li H, Di G, Zhang Y, Liang J, Wang X, Xu Z, Kong X. miR-217 through SIRT1 regulates the immunotoxicity of cadmium in Cyprinus carpio. Comp Biochem Physiol Toxicol Pharmacol CBP. 2021. https://doi.org/10.1016/j.cbpc.2021.109086.
Article
Google Scholar
Wang SN, Zhao XQ, Yu B, Wang BW. miR-193a inhibits osteogenic differentiation of bone marrow-derived stroma cell via targeting HMGB1. Biochem Biophys Res Commun. 2018. https://doi.org/10.1016/j.bbrc.2018.05.132.
Article
PubMed
PubMed Central
Google Scholar
Huang MZ, Zhuang Y, Ning X, Zhang H, Shen ZM, Shang XW. Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. 2020. Biosci Rep. https://doi.org/10.1042/bsr20194387.
Zhu X, Zhao Z, Zeng C, Chen B, Huang H, Chen Y, Zhou Q, Yang L, Lv J, Zhang J, Pan D, Shen J, Duque G, Cai D. HNGF6A inhibits oxidative stress-induced MC3T3-E1 cell apoptosis and osteoblast phenotype inhibition by targeting Circ_0001843/miR-214 pathway. Calcif Tissue Int. 2020. https://doi.org/10.1007/s00223-020-00660-z.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Hou J, Ye L, Chen Y, Cui J, Tian W, Li C, Liu L. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep. 2014. https://doi.org/10.1038/srep03819.
Article
PubMed
PubMed Central
Google Scholar
Sun H, Huang Z, Wu P, Chang Z, Liao W, Zhang Z. CDK6 and miR-320c co-regulate chondrocyte catabolism through NF-κB signaling pathways. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018. https://doi.org/10.1159/000495392.
Article
Google Scholar
Meng F, Zhang Z, Chen W, Huang G, He A, Hou C, Long Y, Yang Z, Zhang Z, Liao W. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthr Cartil. 2016. https://doi.org/10.1016/j.joca.2015.12.012.
Article
Google Scholar
Liao W, Ning Y, Xu HJ, Zou WZ, Hu J, Liu XZ, Yang Y, Li ZH. BMSC-derived exosomes carrying microRNA-122–5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci. 2019. https://doi.org/10.1042/cs20181064.
Article
Google Scholar
Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y, Jia L, Li W. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther. 2018. https://doi.org/10.1186/s13287-018-0976-0.
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Zeng J, Li Y, Liao Q, Huang D, Zou Y, Liu G. Tail suspension delays ectopic ossification in proteoglycan-induced ankylosing spondylitis in mice via miR-103/DKK1. Exp Ther Med. 2021. https://doi.org/10.3892/etm.2021.10397.
Article
PubMed
PubMed Central
Google Scholar
Hu M, Zhu X, Yuan H, Li H, Liao H, Chen S. The function and mechanism of the miR-210-3p/KRAS axis in bone marrow-derived mesenchymal stem cell from patients with osteoporosis. J Tissue Eng Regen Med. 2021. https://doi.org/10.1002/term.3215.
Article
PubMed
Google Scholar
Lv Y, Huang Y, Xu M, Heng BC, Yang C, Cao C, Hu Z, Liu W, Chi X, Gao M, Zhang X, Wei Y, Deng X. The miR-193a-3p-MAP3k3 signaling axis regulates substrate topography-induced osteogenesis of bone marrow stem cells. Adv Sci. 2020. https://doi.org/10.1002/advs.201901412.
Article
Google Scholar
Xie X, Song J, Li G. MiR-21a-5p suppresses bisphenol A-induced pre-adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK. Biochem Biophys Res Commun. 2016. https://doi.org/10.1016/j.bbrc.2016.03.066.
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Ren Z, She R, Ao J, Wa Q, Sun Z, Li B, Tian X. miR-23a-3p regulated by LncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5. Cell Tissue Res. 2021. https://doi.org/10.1007/s00441-020-03289-4.
Article
PubMed
PubMed Central
Google Scholar
Chai L, Li Y, Chen S, Perl A, Zhao F, Ma H. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Plant Sci Int J Exp Plant Biol. 2014. https://doi.org/10.1016/j.plantsci.2014.09.010.
Article
Google Scholar
Flanagan DJ, Vincan E, Phesse TJ. Wnt signaling in cancer: not a binary ON:OFF switch. Can Res. 2019. https://doi.org/10.1158/0008-5472.Can-19-1362.
Article
Google Scholar
Patel S, Alam A, Pant R, Chattopadhyay S. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02872.
Article
PubMed
PubMed Central
Google Scholar
Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00745.
Article
PubMed
PubMed Central
Google Scholar
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110851.
Article
PubMed
Google Scholar
Nong J, Kang K, Shi Q, Zhu X, Tao Q, Chen YG. Phase separation of Axin organizes the β-catenin destruction complex. J Cell Biol. 2021. https://doi.org/10.1083/jcb.202012112.
Article
PubMed
PubMed Central
Google Scholar
Jang S, Cho HH, Park JS, Jeong HS. Non-canonical Wnt mediated neurogenic differentiation of human bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2017. https://doi.org/10.1016/j.neulet.2017.09.023.
Article
PubMed
Google Scholar
Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071694.
Article
PubMed
PubMed Central
Google Scholar
Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (review). Int J Mol Med. 2018. https://doi.org/10.3892/ijmm.2018.3689.
Article
PubMed
PubMed Central
Google Scholar
Wei W, Zheng L, Gao Y, He M, Yang F. Expression and prognostic significance of NKD2 in ovarian cancer. Jpn J Clin Oncol. 2021. https://doi.org/10.1093/jjco/hyaa244.
Article
PubMed
PubMed Central
Google Scholar
Yu M, Wong SW, Han D, Cai T. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis. 2019. https://doi.org/10.1111/odi.12931.
Article
PubMed
Google Scholar
Salik B, Yi H, Hassan N, Santiappillai N, Vick B, Connerty P, Duly A, Trahair T, Woo AJ, Beck D, Liu T, Spiekermann K, Jeremias I, Wang J, Kavallaris M, Haber M, Norris MD, Liebermann DA, D’Andrea RJ, Murriel C, Wang JY. Targeting RSPO3-LGR4 signaling for leukemia stem cell eradication in acute myeloid leukemia. Cancer Cell. 2020. https://doi.org/10.1016/j.ccell.2020.05.014.
Article
PubMed
Google Scholar
Soleas JP, D’Arcangelo E, Huang L, Karoubi G, Nostro MC, McGuigan AP, Waddell TK. Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials. 2020. https://doi.org/10.1016/j.biomaterials.2020.120128.
Article
PubMed
Google Scholar
Choi BR, Cave C, Na CH, Sockanathan S. GDE2-dependent activation of canonical Wnt signaling in neurons regulates oligodendrocyte maturation. Cell Rep. 2020. https://doi.org/10.1016/j.celrep.2020.107540.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Zhang F, Duan F, Huang R, Chen X, Ming J, Na J. Homozygous MESP1 knock-in reporter hESCs facilitated cardiovascular cell differentiation and myocardial infarction repair. Theranostics. 2020. https://doi.org/10.7150/thno.42347.
Article
PubMed
PubMed Central
Google Scholar
Dirckx N, Moorer MC, Clemens TL, Riddle RC. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019. https://doi.org/10.1038/s41574-019-0246-y.
Article
PubMed
PubMed Central
Google Scholar
Shares BH, Busch M, White N, Shum L, Eliseev RA. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J Biol Chem. 2018. https://doi.org/10.1074/jbc.RA118.004102.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, Tang J, Murray D, Zhou X, Drissi H, Dard MM, Tu Q, Chen J. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2017. https://doi.org/10.1002/jbmr.3230.
Article
Google Scholar
Kureel J, John AA, Prakash R, Singh D. MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1 -facilitated augmentation of beta-catenin transactivation. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.26490.
Article
PubMed
Google Scholar
Li X, Peng B, Zhu X, Wang P, Sun K, Lei X, He H, Tian Y, Mo S, Zhang R, Yang L. MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with Wnt signaling in ERα-deficient rBMSCs. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28916.
Article
PubMed
PubMed Central
Google Scholar
Duan DY, Tang J, Tian HT, Shi YY, Jia J. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway. Life Sci. 2021. https://doi.org/10.1016/j.lfs.2021.119548.
Article
PubMed
PubMed Central
Google Scholar
Yin C, Tian Y, Yu Y, Li D, Miao Z, Su P, Zhao Y, Wang X, Pei J, Zhang K, Qian A. Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res. 2021. https://doi.org/10.1016/j.phrs.2020.105230.
Article
PubMed
Google Scholar
Wang CG, Hu YH, Su SL, Zhong D. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med. 2020. https://doi.org/10.1038/s12276-020-0475-0.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Xu Y, Feng S, He P, Sheng B, Ni J. miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1/Smurf2-mediated KLF5/β-catenin signaling pathway. Exp Mol Med. 2021. https://doi.org/10.1038/s12276-021-00631-w.
Article
PubMed
PubMed Central
Google Scholar
Shuai Y, Yang R, Mu R, Yu Y, Rong L, Jin L. MiR-199a-3p mediates the adipogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating KDM6A/WNT signaling. Life Sci. 2019. https://doi.org/10.1016/j.lfs.2019.01.051.
Article
PubMed
Google Scholar
Chen C, Peng Y, Peng Y, Peng J, Jiang S. miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/β-catenin signaling. J Mol Endocrinol. 2014. https://doi.org/10.1530/jme-14-0013.
Article
PubMed
PubMed Central
Google Scholar
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W, Kang Y. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 2018. https://doi.org/10.1186/s13287-018-1004-0.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B, Weng X. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. 2020. https://doi.org/10.1016/j.bbrc.2019.12.065.
Article
PubMed
PubMed Central
Google Scholar
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone. 2020. https://doi.org/10.1016/j.bone.2020.115542.
Article
PubMed
PubMed Central
Google Scholar
Suzuki MF, Oliveira JE, Damiani R, Lima ER, Amaral KC, Santos AMS, Magalhães GS, Faverani LP, Pereira L, Silva FM, Bartolini P. Human bone morphogenetic protein-2 (hBMP-2) characterization by physical-chemical, immunological and biological assays. AMB Express. 2020. https://doi.org/10.1186/s13568-020-0964-5.
Article
PubMed
PubMed Central
Google Scholar
Mondal A, NeMoyer R, Vora M, Napoli L, Syed Z, Langenfeld E, Jia D, Peng Y, Gilleran J, Roberge J, Rongo C, Jabbour SK, Langenfeld J. Bone morphogenetic protein receptor 2 inhibition destabilizes microtubules promoting the activation of lysosomes and cell death of lung cancer cells. Cell Commun Signal. 2021. https://doi.org/10.1186/s12964-021-00743-w.
Article
PubMed
PubMed Central
Google Scholar
Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008. https://doi.org/10.1074/jbc.M801774200.
Article
PubMed
PubMed Central
Google Scholar
Sheu TJ, Zhou W, Fan J, Zhou H, Zuscik MJ, Xie C, Yin G, Berk BC. Decreased BMP2 signal in GIT1 knockout mice slows bone healing. Mol Cell Biochem. 2014. https://doi.org/10.1007/s11010-014-2173-5.
Article
PubMed
PubMed Central
Google Scholar
Qin W, Liu L, Wang Y, Wang Z, Yang A, Wang T. Mir-494 inhibits osteoblast differentiation by regulating BMP signaling in simulated microgravity. Endocrine. 2019. https://doi.org/10.1007/s12020-019-01952-7.
Article
PubMed
PubMed Central
Google Scholar
Lin E, Kong L, Bai X, Luan Y, Liu C. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 2009. https://doi.org/10.1074/jbc.M807709200.
Article
PubMed
PubMed Central
Google Scholar
Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003. https://doi.org/10.1359/jbmr.2003.18.10.1842.
Article
Google Scholar
Zhang M, Yan Y, Lim Y, Tang D, Xie R, Chen A, Tai P, Harris S, Xing L, Qin Y, Chen D. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem. 2009. https://doi.org/10.1002/jcb.22319.
Article
PubMed
PubMed Central
Google Scholar
Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, Yahata Y, Tohyama M, Hanakawa Y, Sayama K, Hashimoto K. Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci. 2006. https://doi.org/10.1016/j.jdermsci.2005.12.011.
Article
PubMed
Google Scholar
Ding L, Yin Y, Hou Y, Jiang H, Zhang J, Dai Z, Zhang G. viamicroRNA-214-3p suppresses ankylosing spondylitis fibroblast osteogenesis BMP-TGF Axis and BMP2. Front Endocrinol. 2020. https://doi.org/10.3389/fendo.2020.609753.
Article
Google Scholar
Wang C, Qiao X, Zhang Z, Li C. MiR-128 promotes osteogenic differentiation of bone marrow mesenchymal stem cells in rat by targeting DKK2. 2020. Biosci Rep. https://doi.org/10.1042/bsr20182121.
Tan X, Zhu T, Zhang L, Fu L, Hu Y, Li H, Li C, Zhang J, Liang B, Liu J. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes. Adipocyte. 2022. https://doi.org/10.1080/21623945.2022.2030570.
Article
PubMed
PubMed Central
Google Scholar
Zhou X, Xu W, Wang Y, Zhang H, Zhang L, Li C, Yao S, Huang Z, Huang L, Luo D. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell Mol Biol Lett. 2021. https://doi.org/10.1186/s11658-021-00269-6.
Article
PubMed
PubMed Central
Google Scholar
Zhou X, Wang J, Sun H, Qi Y, Xu W, Luo D, Jin X, Li C, Chen W, Lin Z, Li F, Zhang R, Li G. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene. Cell Tissue Res. 2016. https://doi.org/10.1007/s00441-016-2416-8.
Article
PubMed
Google Scholar
Sun J, Shin DY, Eiseman M, Yallowitz AR, Li N, Lalani S, Li Z, Cung M, Bok S, Debnath S, Marquez SJ, White TE, Khan AG, Lorenz IC, Shim JH, Lee FS, Xu R, Greenblatt MB. SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-24819-w.
Article
PubMed
PubMed Central
Google Scholar
Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, Kevil CG, Dong Y. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol. 2019. https://doi.org/10.1016/j.ajpath.2019.05.005.
Article
PubMed
PubMed Central
Google Scholar
Morsczeck C, Reck A, Beck HC. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells. Mol Cell Biochem. 2017. https://doi.org/10.1007/s11010-016-2918-4.
Article
PubMed
Google Scholar
Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet. 2012. https://doi.org/10.1093/hmg/dds129.
Article
PubMed
PubMed Central
Google Scholar
Zhong LN, Zhang YZ, Li H, Fu HL, Lv CX, Jia XJ. Overexpressed miR-196a accelerates osteogenic differentiation in osteoporotic mice via GNAS-dependent Hedgehog signaling pathway. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.29166.
Article
PubMed
PubMed Central
Google Scholar
Dinesh P, Kalaiselvan S, Sujitha S, Rasool M. miR-506-3p alleviates uncontrolled osteoclastogenesis via repression of RANKL/NFATc1 signaling pathway. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29757.
Article
PubMed
Google Scholar
Tang R, Ma F, Li W, Ouyang S, Liu Z, Wu J. miR-206-3p inhibits 3T3-L1 cell adipogenesis via the c-Met/PI3K/Akt pathway. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071510.
Article
PubMed
PubMed Central
Google Scholar
Mi L, Chen Y, Zheng X, Li Y, Zhang Q, Mo D, Yang G. MicroRNA-139-5p suppresses 3T3-L1 preadipocyte differentiation through notch and IRS1/PI3K/Akt insulin signaling pathways. J Cell Biochem. 2015. https://doi.org/10.1002/jcb.25065.
Article
PubMed
Google Scholar
Srivastava S, Kumar N, Roy P. Role of ERK/NFκB in vanadium (IV) oxide mediated osteoblast differentiation in C3H10t1/2 cells. Biochimie. 2014. https://doi.org/10.1016/j.biochi.2014.01.005.
Article
PubMed
Google Scholar
Peng F, Qiu L, Yao M, Liu L, Zheng Y, Wu S, Ruan Q, Liu X, Zhang Y, Li M, Chu PK. A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomater Sci. 2021. https://doi.org/10.1039/d1bm01075a.
Article
PubMed
Google Scholar
Mikami Y, Asano M, Honda MJ, Takagi M. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol. 2010. https://doi.org/10.1002/jcp.22017.
Article
PubMed
Google Scholar